# Some notes on quotient Banach lattices

Asghar Ranjbari Leila Hasanzadeh

University of Tabriz

Positivity XII: 2-7 June 2023, Hammamet, Tunisia

### Riesz spaces

- A Riesz space (or a vector lattice) is an ordered vector space X with the additional property that for each pair of vectors  $x, y \in X$  the supremum and the infimum of the set  $\{x, y\}$  both exist in X.
- A vector x in a Riesz space X is called positive whenever  $x \ge 0$  holds.
- The set of all positive vectors of X will be denoted by  $X^+$ , i.e.,  $X^+ = \{x \in X : x \ge 0\}$ . The set  $X^+$  of positive vectors is called the positive cone of X.

### **Definitions**

- A net  $(x_{\alpha})$  in a Riesz space X is **order convergent** to  $x \in X$ , written as  $x_{\alpha} \stackrel{o}{\to} x$ , if there exists a net  $(y_{\beta})$  possibly over a different index set, such that  $y_{\beta} \downarrow 0$  and there exists  $\alpha_0$  such that  $|x_{\alpha} x| \le y_{\beta}$  for all  $\alpha \ge \alpha_0$ .
- A net  $(x_{\alpha})$  in a Riesz space X is **unbounded order** convergent to  $x \in X$ , written as  $x_{\alpha} \xrightarrow{uo} x$ , if  $|x_{\alpha} x| \wedge u \xrightarrow{o} 0$  for all  $u \in X^+$ .

### **Definitions**

- A subset I of a Riesz space is called **solid** whenever  $|x| \le |y|$  and  $y \in I$  imply  $x \in I$ .
- A solid vector subspace of a Riesz space is referred to as an ideal.
- An order closed ideal is referred to as a band.
- For every element x of a Riesz space X, the **principal ideal generated** by x,  $X_x$  is defined as the following

$$X_x = \{ y \in X : \exists \lambda > 0 \text{ with } |y| \le \lambda |x| \}.$$

• The **principal band generated** by a vector x,  $B_x$  is given by

$$B_X = \{ y \in X : |y| \wedge n|x| \uparrow |y| \}.$$

### **Definitions**

- A Riesz space X is called **Archimedean** whenever  $\frac{1}{n}x \downarrow 0$  holds in X for each  $x \in X^+$ .
- A vector x > 0 ( $x \in X^+, x \neq 0$ ) in a Riesz space X is an **atom** if for any  $u, v \in [0, x]$  with  $u \wedge v = 0$ , either u = 0 or v = 0.
- If X is an Archimedean Riesz space, then x > 0 in X is an atom if and only if  $X_x$  is one-dimensional.
- An Archimedean Riesz space *X* is called **atomic** if it is the band generated by its atoms.

P. Meyer-Nieberg, Banach Lattices, Universitext. Springer, Berlin (1991).

### **Banach lattices**

- A norm  $\|.\|$  on a Riesz space is said to be a **lattice norm** whenever  $|x| \le |y|$  implies  $\|x\| \le \|y\|$ .
- A Riesz space equipped with a lattice norm is known as a **normed Riesz space**.
- If a normed Riesz space is also norm complete, then it is referred to as a **Banach lattice**.
- A Banach lattice X is **order continuous** if  $||x_{\alpha}|| \to 0$  for any net  $(x_{\alpha})$  in X that order converges to 0.

- A net  $(x_{\alpha})$  in a Banach lattice X is **weak convergent** to  $x \in X$ , written as  $x_{\alpha} \xrightarrow{w} x$ , if  $x^{*}(x_{\alpha}) \to x^{*}(x)$  in  $\mathbb{R}$  for all  $x^{*} \in X^{*}$  (norm dual of X).
- (norm dual of X).

   A net  $(x_{\alpha})$  in an Archimedean Riesz space X is **uniform convergent** to  $x \in X$ , written as  $x_{\alpha} \stackrel{u}{\to} x$ , if there exists  $e \in X^+$ such that for every  $\varepsilon > 0$  there exists  $\alpha_0$  such that  $|x_{\alpha} x| \le \varepsilon e$ whenever  $\alpha \ge \alpha_0$ .

### **Quotient Banach lattices**

Let *X* be a Banach lattice and let *I* be a normed closed ideal of *X*.

Let  $\pi: X \to \frac{X}{I}$  that  $\pi(x) = x + I$  for all  $x \in X$ , be the canonical mapping of X onto quotient space  $\frac{X}{I}$ .  $\pi$  is linear, continuous and open.

We denote:

$$\dot{\mathbf{x}} = \pi(\mathbf{x}) = \mathbf{x} + \mathbf{I},$$

for all  $x \in X$ .

### **Quotient Banach lattices**

Recall that the quotient norm on  $\frac{X}{I}$  defined as

$$\|\dot{x}\| = \|\pi(x)\| = \inf\{\|x - z\| : z \in I\}$$
  $(\dot{x} \in \frac{X}{I}).$ 

A relation  $\leq$  is defined on  $\frac{X}{I}$  by letting  $\dot{x} \leq \dot{y}$  whenever there exist  $x_1 \in \dot{x}$  and  $y_1 \in \dot{y}$  with  $x_1 \leq y_1$ .

By the above norm and order relation, the quotient vector space  $\frac{X}{I}$  is a Banach lattice and the canonical projection  $\pi$  of X onto  $\frac{X}{I}$  is a lattice homomorphism.

It follows that  $\dot{x^+} = (\dot{x})^+, \ \dot{x^-} = (\dot{x})^-, \ |\dot{x}| = |\dot{x}|.$ 

- The canonical projection of X onto  $\frac{X}{T}$  is not necessarily order continuous.
- It is order continuous if and only if I is a band.



# unbounded norm convergence

A net  $(x_{\alpha})$  in a Banach lattice X is **unbounded norm (resp. unbounded absolute weak) convergent** to  $x \in X$ , written as  $x_{\alpha} \xrightarrow{un} x$  (resp.  $x_{\alpha} \xrightarrow{uaw} x$ ), if  $|x_{\alpha} - x| \wedge u$  converges to zero in norm (resp. weak) for all  $u \in X^+$ .

# **Unbounded norm topology**

Let X be a Banach lattice. For every  $\varepsilon > 0$  and non-zero  $u \in X^+$ , put

$$V_{\varepsilon,u} = \{x \in X : || |x| \land u|| < \varepsilon\}.$$

The collection of all sets of this form is a base of zero neighborhoods for a topology, and the convergence in this topology agrees with un-convergence. This topology is said **un-topology** which is a Hausdorff linear topology. Since each  $V_{\varepsilon,u}$  is solid, then this topology is locally solid.

- Y. Deng, M. O'Brien, V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity, 21 (2017) 963-974.
- M. Kandic, M.A.A. Marabeh, V.G. Troitsky, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl. 451 (2017) 259-279.

# **Quotient un-topology**

Let X be a Banach lattice with un-topology and I be a normed closed ideal of X. If  $\mathfrak{B} = \{V_{\varepsilon,u} : 0 \neq u \in X^+, \varepsilon > 0\}$  is a base of zero neighborhoods for un-topology on X, then

$$\mathfrak{B}_{\frac{X}{I}} = \{ \pi(V_{\varepsilon,u}) \; ; \; V_{\varepsilon,u} \in \mathfrak{B} \}$$

$$= \{ x + I \; ; \; x \in V_{\varepsilon,u} \}$$

$$= \{ x + I \; ; \; |||x| \wedge u|| < \varepsilon \},$$

is a base of zero neighborhoods for un-topology on  $\frac{X}{I}$ .

### **Theorem**

Let I be a normed closed ideal of a Banach lattice X. Then  $\dot{V}_{\varepsilon,u}\subseteq V_{\varepsilon,\dot{u}}$ . Moreover, if  $\|u\|<\varepsilon$ , then  $V_{\varepsilon,\dot{u}}=\dot{V}_{\varepsilon,u}$ .

Note: The first part of Theorem shows that the quotient map is un-continuous.

Let  $X = \mathbb{R}^2$ . By coordinatewise order and Euclidean norm, X is a Banach lattice.

Consider  $I = \{(x,0) : x \in \mathbb{R}\}$  which is a normed closed ideal of  $\mathbb{R}^2$ .

Consider u=(1,0) and  $\varepsilon=\frac{1}{2}.$  Note that ||u||=1 and  $||u|| \le \varepsilon=\frac{1}{2}.$  We have

$$\begin{split} \dot{V}_{\varepsilon,u} &= \{\dot{x}: \ x \in V_{\varepsilon,u}\} \\ &= \{(a,b) + I: \ \| \mid (a,b) \mid \land (1,0) \| < \frac{1}{2}\} \\ &= \{(a,b) + I: \ \|(|\ a \mid \land 1, |b| \land 0) \| < \frac{1}{2}\} \\ &= \{(a,b) + I: \ |a| < \frac{1}{2}\} \subsetneq \frac{\mathbb{R}^2}{I}. \end{split}$$

### On the other hand

$$V_{\varepsilon,\dot{u}} = \{\dot{x} : \| | \dot{x} | \land \dot{u} \| < \frac{1}{2} \}$$

$$= \{ (a,b) + I : \| | (a,b) + I | \land ((1,0) + I) \| < \frac{1}{2} \}$$

$$= \{ (a,b) + I : \| | (a,b) + I | \land I \| < \frac{1}{2} \}$$

$$= \{ (a,b) + I : \| I \| < \frac{1}{2} \} \text{ (note that } \| I \| = 0 )$$

$$= \{ (a,b) + I : a,b \in \mathbb{R} \} = \frac{\mathbb{R}^2}{I}.$$

Therefore  $\dot{V}_{\varepsilon,u} \neq V_{\varepsilon,\dot{u}}$ .

# **Proposition**

Let X be a Banach lattice, I be a normed closed ideal of X and  $(x_{\alpha})$  be a net in X. Then

- (a) If  $x_{\alpha} \xrightarrow{un} x$  in X, then  $\dot{x}_{\alpha} \xrightarrow{un} \dot{x}$  in  $\frac{X}{I}$ .
- **(b)** If  $x_{\alpha} \xrightarrow{w} x$  in X, then  $\dot{x}_{\alpha} \xrightarrow{w} \dot{x}$  in  $\frac{X}{I}$ .
- (c) If  $x_{\alpha} \xrightarrow{uaw} x$  in X, then  $\dot{x}_{\alpha} \xrightarrow{uaw} \dot{x}$  in  $\frac{X}{I}$ .
- (d) If  $x_{\alpha} \stackrel{u}{\to} x$  in X, then  $\dot{x}_{\alpha} \stackrel{u}{\to} \dot{x}$  in  $\frac{X}{I}$ .

order continuous.

Consider the Banach lattice  $\ell_{\infty}$  and its normed closed ideal  $c_0$ . Consider  $u=(1,1,1,\ldots)$  and the sequence  $(x_n)\subseteq \ell^{\infty}$  which  $x_n=(0,0,...,0,1,1,...)$  with n zeros at the head for all  $n\in\mathbb{N}$ . This is a decreasing sequence in  $\ell_{\infty}$  with infimum 0, and then it converges to zero in order in  $\ell_{\infty}$ . On the other hand,  $x_n-u\in c_0$  for all  $n\in\mathbb{N}$ . This yields that  $\pi(x_n)=\pi(u)$  is a (non-zero) constant sequence in the quotient Banach lattice  $\frac{\ell^{\infty}}{c_0}$  which does not converge to 0 in order. **Result:** The quotient mapping  $\pi:X\to \frac{X}{\ell}$  is not generally

Since  $(x_n)$  is order convergent, then it is unbounded order convergent.

On the other hand,  $\pi(x_n)$  is order bounded and we know that for order bounded sequences, order convergence and unbounded order convergence are equivalent.

It follows that  $\pi(x_n)$  is not unbounded order continuous.

Result: The quotient map is not uo-continuous, in generally.



N. Gao, D. H. Leung, F. Xanthos, Duality for unbounded order convergence and applications, Springer International Publishing AG (2017).

**Proposition:** Let X be a Banach lattice and I be a normed closed ideal in X. Let  $x \in X$  be an atom in X such that  $x \notin I$ . Then x + I is an atom in  $\frac{X}{I}$ .

**Remark:** If  $x \in I$ , then x + I = I is the zero element of quotient space which is not an atom in  $\frac{X}{I}$ , even x is an atom in X. **Theorem:** If X is an atomic Banach lattice and I is a normed

**Theorem:** If X is an atomic Banach lattice and I is a normed closed ideal of X, then  $\frac{X}{I}$  is an atomic Banach lattice.

Suppose that Banach lattice  $X=\mathbb{R}^2$  and  $I=\{(x,0): x\in\mathbb{R}\}$  and  $J=\{(0,y): y\in\mathbb{R}\}$  as normed closed ideals in  $\mathbb{R}^2$ . The elements (a,0) and (0,a) are atoms in X for all a>0. So X is an atomic Banach lattice  $(X=\mathbb{R}^2$  generated by (1,0), (0,1)). With considering I, since  $(a,0)\in I$ , then (a,0)+I is the zero of quotient space  $\frac{X}{I}$ . Therefore (a,0)+I is not an atom in  $\frac{X}{I}$  but (0,a)+I is an atom in  $\frac{X}{I}$ . Similarly, (0,a)+J is not an atom in  $\frac{X}{J}$  but (a,0)+J is an atom in  $\frac{X}{J}$ .

Thank you for your attentions.

Questions?