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A vector lattice algebra X (that is, a vector lattice together with a
real algebra structure for which the product of positive elements is
positive) is an f-algebra if, for every a,b € X with a Ab =0,

(ac) Nb=0= (ca) ANb forall ce X.
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4. D" where D is a commuting set of bounded Hermitian
operators on a Hilbert space.
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An f-algebra is said to be a Banach f-algebra if it has a norm that
makes it into a Banach lattice and a Banach algebra.
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Free Banach lattices

Because free Banach lattices have proven to be very useful.

Definition

Let £ be a Banach space. The free Banach lattice generated by E
is a Banach lattice FBL[FE] together with an isometric embedding
dg: E — FBL[E] such that, for every Banach lattice X and every
operator T': E — X, there exists a unique lattice homomorphism
T: FBL[E] — X with |T'|| = ||T'|| making the following diagram
commutative:

E—L 3 Xx

o | /

FBLIE
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Abstract construction (I): FAFA

Definition

A lattice, linear and algebraic (LLA) expression is a formal
expression ®[tq,...,t,] involving finitely many variables, the linear
and lattice operations, and a product. An LLA expression is said to
vanish on a vector lattice algebra X if ®(z1,...,z,) = 0 for every
Ti1,...,Tn € X.
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A lattice, linear and algebraic (LLA) expression is a formal
expression ®[tq,...,t,] involving finitely many variables, the linear
and lattice operations, and a product. An LLA expression is said to
vanish on a vector lattice algebra X if ®(z1,...,z,) = 0 for every
Ti1,...,Tn € X.

Theorem (M. Henriksen and J. R. Isbell)

Let & be an LLA expression. If ® vanishes on R, then it vanishes
on every Archimedean f-algebra.
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Let E be a vector space. The free Archimedean f-algebra
generated by E is

FAFA[E] = VLA{S,: z € E} C RF”,

where 6, (w) = w(x) for every w € E¥, together with the linear
map dg: E — FAFA[E].
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generated by FE is

FAFA[E] = VLA{6,: = € E} C RE",

where 6,(w) = w(x) for every w € E#, together with the linear
map dg: E — FAFA[E].

» Not all elements of FAFA[E] are positively homogeneous
functions! (Compare with FVL[E].)

» Hence, even if E is normed, we cannot represent FAFA[E]
inside C'(Bpg+) (because there exist non-zero elements of
FAFA|[E] that vanish on Bg-).

» Keep this fact in mind; | will surprise you later.
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» Next step: the free normed f-algebra.
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Who is ker p C FAFA[E]? Can we give a nice description of
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For every Banach f-algebra A there exist a Banach lattice X, a
compact Hausdorff space K and a contractive injective
lattice-algebra homomorphism R: A — Xo @ C(K).
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A new tool to compute ker p

Theorem (Structure theorem)

For every Banach f-algebra A there exist a Banach lattice X, a
compact Hausdorff space K and a contractive injective
lattice-algebra homomorphism R: A — Xo ®oo C(K).

Corollary

Let ® be an LLA expression. If ® vanishes on [—1,1], then it also
vanishes on the unit ball of every normed f-algebra.

Proposition

Let E be a Banach space. Let p be the greatest submultiplicative
lattice seminorm on FAFA[E] such that p(d;) < ||z|| for all x € E.
Then

kerp ={f € FAFA[E]: f|p,. =0}.
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» Remember: FAFA[E] does not embed in C(Bg~), i.e., the
restriction map

R: FAFA[E] — C(Bg+)
f — f|BE*

is not injective.
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This is very useful!

» Remember: FAFA[E] does not embed in C(Bg+), i.e., the
restriction map

R: FAFA[E] — C(Bgp)
f > flBp-

is not injective.
» lts kernel is

ker R = { f € FAFA[E] : f|p,. = 0}.

Wait...This is precisely ker p!

» So R induces an injective lattice-algebra homomorphism
R: FNFA[E] — C(Bg~) which must be contractive.

» That's nice..But what about FBFA[E]? Equivalently, what
about the norm in FNFA[E]?

» We seriously doubt that a simple, explicit expression for the
free norm exists. Still, many things can be said about it. We

present them in relation with the “representation problem.”
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NA)={acA:ab=0forallbe A} ={0}.

Theorem

Let E be a Banach space. The inclusion map FNFA[E]| — C(Bg-)
extends to an injective lattice-algebra homomorphism
FBFA[E]| — C(Bg~) if and only if FBFA[E] is semiprime.

To find out whether FBFA[E] is semiprime, we still need to be
able to say something about the norm, at least for some E.

12/16



13/16



Let E be a finite-dimensional Banach space. The free Banach
f-algebra FBFA[E] is lattice-algebra isomorphic to C([0,1] x Sg+)
with the pointwise order, and product

(f*g)(r, u) = Tf("" u)g(r, u)
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The finite-dimensional case

Theorem

Let E be a finite-dimensional Banach space. The free Banach
f-algebra FBFA[E] is lattice-algebra isomorphic to C([0, 1] x Sg~)
with the pointwise order, and product

(f *g)(r,u) = rf(r,u)g(r, u).

Definition
Let E be a Banach space. For every f € FBFA[E], define 7(f)
to be the least positive number such that, if A is a semiprime

finite—dimensionql Banach f-algebra, and T': E — A is contractive,
then 75 (f) > ||T'f|| for every f € FBFA[E].

Theorem

If E is a finite-dimensional Banach space, then || f|| = 7(f) for
every f € FBFA[E]. 13/16
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The usefulness of 75

| admit it: 7 is still far from an explicit expression of the norm.
However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose Tg defines a norm on
FBFA[E]. Then FBFA[E] is semiprime (and therefore
representable in C'(Bg-)).

Hence, when E is finite-dimensional, FBFA[E] is representable.
We already knew this! But with this technique, we can go further.

Proposition

If E is contractively complemented in a space with a monotone
basis, then T coincides with the free norm in FBFA[E].
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Being representable is very useful to prove facts about the FBFA.

Proposition

ENFA|[E] is order dense in C(Bg-). Hence, if FBFA[E] is
representable, then FNFA[E] is order dense in FBFA[E].

If FBFA[E] and FBFA[F] are representable, the extension
operator

FE—— T . F

e [

FBFA[E] — L FBFA[F]

is given by Tf = foT*. This is useful to study the properties of
T'. These are not as clean as in the case of the FBL (for instance,
T bijective does not imply 7" injective!).
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