David Muñoz-Lahoz¹ (Joint work with P. Tradacete)

¹ICMAT-UAM (Madrid)

Positivity XII June 2, 2025

Outline

- 1. Introduction to (Banach) f-algebras and examples
- Free Banach f-algebras
 Definition
 Abstract construction
 Towards a concrete representation
- The representation problem
 The finite-dimensional case
 A study of the norm
 Other properties

Definition

A vector lattice algebra X (that is, a vector lattice together with a real algebra structure for which the product of positive elements is positive) is an f-algebra if, for every $a,b\in X$ with $a\wedge b=0$,

$$(ac) \wedge b = 0 = (ca) \wedge b \quad \text{for all } c \in X_+.$$

Definition

A vector lattice algebra X (that is, a vector lattice together with a real algebra structure for which the product of positive elements is positive) is an f-algebra if, for every $a,b\in X$ with $a\wedge b=0$,

$$(ac) \wedge b = 0 = (ca) \wedge b$$
 for all $c \in X_+$.

Example (f-algebras)

1. Every vector lattice X with the zero product (denote it by X_0).

Definition

A vector lattice algebra X (that is, a vector lattice together with a real algebra structure for which the product of positive elements is positive) is an f-algebra if, for every $a,b\in X$ with $a\wedge b=0$,

$$(ac) \wedge b = 0 = (ca) \wedge b$$
 for all $c \in X_+$.

Example (f-algebras)

- 1. Every vector lattice X with the zero product (denote it by X_0).
- 2. Orth(X) for every vector lattice X.

Definition

A vector lattice algebra X (that is, a vector lattice together with a real algebra structure for which the product of positive elements is positive) is an f-algebra if, for every $a,b\in X$ with $a\wedge b=0$,

$$(ac) \wedge b = 0 = (ca) \wedge b$$
 for all $c \in X_+$.

Example (f-algebras)

- 1. Every vector lattice X with the zero product (denote it by X_0).
- 2. Orth(X) for every vector lattice X.
- 3. C(K) with pointwise order and product.

Definition

A vector lattice algebra X (that is, a vector lattice together with a real algebra structure for which the product of positive elements is positive) is an f-algebra if, for every $a,b\in X$ with $a\wedge b=0$,

$$(ac) \wedge b = 0 = (ca) \wedge b$$
 for all $c \in X_+$.

Example (f-algebras)

- 1. Every vector lattice X with the zero product (denote it by X_0).
- 2. Orth(X) for every vector lattice X.
- 3. C(K) with pointwise order and product.
- 4. D'', where D is a commuting set of bounded Hermitian operators on a Hilbert space.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Definition

An f-algebra is said to be a $Banach\ f$ -algebra if it has a norm that makes it into a $Banach\ lattice\ and\ a\ Banach\ algebra.$

Example (Banach *f*-algebras)

1. Every Banach lattice with the zero product.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Example (Banach f-algebras)

- 1. Every Banach lattice with the zero product.
- 2. C(K) with pointwise order and product $f \star g = wfg$, for a fixed $w \in (B_{C(K)})_+$.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Example (Banach f-algebras)

- 1. Every Banach lattice with the zero product.
- 2. C(K) with pointwise order and product $f\star g=wfg$, for a fixed $w\in (B_{C(K)})_+.$
- 3. ℓ_1 with pointwise order and product.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Example (Banach *f*-algebras)

- 1. Every Banach lattice with the zero product.
- 2. C(K) with pointwise order and product $f \star g = wfg$, for a fixed $w \in (B_{C(K)})_+$.
- 3. ℓ_1 with pointwise order and product.
- 4. Direct sums, quotients (by closed lattice-algebraic ideals) and ultraproducts of Banach f-algebras.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Example (Banach f-algebras)

- 1. Every Banach lattice with the zero product.
- 2. C(K) with pointwise order and product $f \star g = wfg$, for a fixed $w \in (B_{C(K)})_+$.
- 3. ℓ_1 with pointwise order and product.
- 4. Direct sums, quotients (by closed lattice-algebraic ideals) and ultraproducts of Banach *f*-algebras.

GOAL

To study free objects in this category.

Definition

An *f*-algebra is said to be a *Banach f-algebra* if it has a norm that makes it into a Banach lattice and a Banach algebra.

Example (Banach f-algebras)

- 1. Every Banach lattice with the zero product.
- 2. C(K) with pointwise order and product $f \star g = wfg$, for a fixed $w \in (B_{C(K)})_+$.
- 3. ℓ_1 with pointwise order and product.
- 4. Direct sums, quotients (by closed lattice-algebraic ideals) and ultraproducts of Banach *f*-algebras.

GOAL

To study free objects in this category. But why?

Free Banach lattices

Because free Banach lattices have proven to be very useful.

Free Banach lattices

Because free Banach lattices have proven to be very useful.

Definition

Let E be a Banach space. The free Banach lattice generated by E is a Banach lattice $\mathrm{FBL}[E]$ together with an isometric embedding $\delta_E\colon E\to \mathrm{FBL}[E]$ such that, for every Banach lattice X and every operator $T\colon E\to X$, there exists a unique lattice homomorphism $\hat{T}\colon \mathrm{FBL}[E]\to X$ with $\|\hat{T}\|=\|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach lattice generated by E is a Banach lattice $\mathrm{FBL}[E]$ together with an isometric embedding $\delta_E \colon E \to \mathrm{FBL}[E]$ such that, for every Banach lattice X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon \mathrm{FBL}[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach lattice $\mathrm{FBL}[E]$ together with an isometric embedding $\delta_E \colon E \to \mathrm{FBL}[E]$ such that, for every Banach lattice X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon \mathrm{FBL}[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra $\mathrm{FBL}[E]$ together with an isometric embedding $\delta_E \colon E \to \mathrm{FBL}[E]$ such that, for every Banach lattice X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon \mathrm{FBL}[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\delta_E \colon E \to FBL[E]$ such that, for every Banach lattice X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach lattice X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra X and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra A and every operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra A and every contractive operator $T \colon E \to X$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra A and every contractive operator $T \colon E \to A$, there exists a unique lattice homomorphism $\hat{T} \colon FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E\colon E\to \mathrm{FBFA}[E]$ such that, for every Banach f-algebra A and every contractive operator $T\colon E\to A$, there exists a unique lattice-algebra homomorphism $\hat{T}\colon \mathrm{FBL}[E]\to X$ with $\|\hat{T}\|=\|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E\colon E\to FBFA[E]$ such that, for every Banach f-algebra A and every contractive operator $T\colon E\to A$, there exists a unique lattice-algebra homomorphism $\hat{T}\colon FBFA[E]\to A$ with $\|\hat{T}\|=\|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra $\operatorname{FBFA}[E]$ together with an isometric embedding $\eta_E\colon E\to\operatorname{FBFA}[E]$ such that, for every Banach f-algebra A and every contractive operator $T\colon E\to A$, there exists a unique lattice-algebra homomorphism $\hat{T}\colon\operatorname{FBFA}[E]\to A$ with $\|\hat{T}\|=\|T\|$ making the following diagram commutative:

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra A and every contractive operator $T \colon E \to A$, there exists a unique lattice-algebra homomorphism $\hat{T} \colon FBFA[E] \to A$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

A general abstract argument (due to V. Troitsky and M. de Jeu) shows that this object exists.

Definition

Let E be a Banach space. The free Banach f-algebra generated by E is a Banach f-algebra FBFA[E] together with an isometric embedding $\eta_E \colon E \to FBFA[E]$ such that, for every Banach f-algebra A and every contractive operator $T \colon E \to A$, there exists a unique lattice-algebra homomorphism $\hat{T} \colon FBFA[E] \to A$ with $\|\hat{T}\| = \|T\|$ making the following diagram commutative:

A general abstract argument (due to V. Troitsky and M. de Jeu) shows that this object exists. Can we construct it?

Abstract construction (I): FAFA

Abstract construction (I): FAFA

Definition

A lattice, linear and algebraic (LLA) expression is a formal expression $\Phi[t_1,\ldots,t_n]$ involving finitely many variables, the linear and lattice operations, and a product. An LLA expression is said to vanish on a vector lattice algebra X if $\Phi(x_1,\ldots,x_n)=0$ for every $x_1,\ldots,x_n\in X$.

Abstract construction (I): FAFA

Definition

A lattice, linear and algebraic (LLA) expression is a formal expression $\Phi[t_1,\ldots,t_n]$ involving finitely many variables, the linear and lattice operations, and a product. An LLA expression is said to vanish on a vector lattice algebra X if $\Phi(x_1,\ldots,x_n)=0$ for every $x_1,\ldots,x_n\in X$.

Theorem (M. Henriksen and J. R. Isbell)

Let Φ be an LLA expression. If Φ vanishes on \mathbb{R} , then it vanishes on every Archimedean f-algebra.

Abstract construction (II): FAFA

Corollary

Let E be a vector space. The free Archimedean f-algebra generated by E is

$$FAFA[E] = VLA\{\delta_x \colon x \in E\} \subseteq \mathbb{R}^{E^\#},$$

where $\delta_x(\omega) = \omega(x)$ for every $\omega \in E^\#$, together with the linear map $\delta_E \colon E \to \mathrm{FAFA}[E]$.

Corollary

Let E be a vector space. The free Archimedean f-algebra generated by E is

$$FAFA[E] = VLA\{\delta_x \colon x \in E\} \subseteq \mathbb{R}^{E^\#},$$

where $\delta_x(\omega) = \omega(x)$ for every $\omega \in E^\#$, together with the linear map $\delta_E \colon E \to \mathrm{FAFA}[E]$.

Not all elements of ${\rm FAFA}[E]$ are positively homogeneous functions! (Compare with ${\rm FVL}[E]$.)

Corollary

Let E be a vector space. The free Archimedean f-algebra generated by E is

$$FAFA[E] = VLA\{\delta_x \colon x \in E\} \subseteq \mathbb{R}^{E^\#},$$

where $\delta_x(\omega) = \omega(x)$ for every $\omega \in E^\#$, together with the linear map $\delta_E \colon E \to \mathrm{FAFA}[E]$.

- Not all elements of FAFA[E] are positively homogeneous functions! (Compare with FVL[E].)
- ▶ Hence, even if E is normed, we cannot represent FAFA[E] inside $C(B_{E^*})$ (because there exist non-zero elements of FAFA[E] that vanish on B_{E^*}).

Corollary

Let E be a vector space. The free Archimedean f-algebra generated by E is

$$FAFA[E] = VLA\{\delta_x \colon x \in E\} \subseteq \mathbb{R}^{E^\#},$$

where $\delta_x(\omega) = \omega(x)$ for every $\omega \in E^\#$, together with the linear map $\delta_E \colon E \to \mathrm{FAFA}[E]$.

- Not all elements of FAFA[E] are positively homogeneous functions! (Compare with FVL[E].)
- ▶ Hence, even if E is normed, we cannot represent FAFA[E] inside $C(B_{E^*})$ (because there exist non-zero elements of FAFA[E] that vanish on B_{E^*}).
- ► Keep this fact in mind; I will surprise you later.

Construction of FNFA and FBFA

► Next step: the free normed *f*-algebra.

- ► Next step: the free normed *f*-algebra.
- ▶ Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.

- ► Next step: the free normed *f*-algebra.
- ► Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...

- ► Next step: the free normed *f*-algebra.
- ► Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...
- ▶ ...but it induces a norm on $FAFA[E]/\ker \rho = FNFA[E]$ (denote it by $\|\cdot\|$).

- ► Next step: the free normed *f*-algebra.
- ▶ Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...
- ▶ ...but it induces a norm on $FAFA[E]/\ker \rho = FNFA[E]$ (denote it by $\|\cdot\|$).
- ▶ This space, together with the isometric embedding $\eta_E = q \delta_E$, is the free normed f-algebra generated by E.

- ► Next step: the free normed *f*-algebra.
- ► Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...
- ▶ ...but it induces a norm on $FAFA[E]/\ker \rho = FNFA[E]$ (denote it by $\|\cdot\|$).
- ▶ This space, together with the isometric embedding $\eta_E = q \delta_E$, is the free normed f-algebra generated by E.
- ▶ Its completion is FBFA[E].

Construction of FNFA and FBFA

- ► Next step: the free normed *f*-algebra.
- ▶ Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...
- ▶ ...but it induces a norm on $FAFA[E]/\ker \rho = FNFA[E]$ (denote it by $\|\cdot\|$).
- ▶ This space, together with the isometric embedding $\eta_E = q \delta_E$, is the free normed f-algebra generated by E.
- ▶ Its completion is FBFA[E].

But wait...

Who is $\ker \rho \subseteq \operatorname{FAFA}[E]$? Can we give a nice description of $\operatorname{FNFA}[E]$?

Construction of FNFA and FBFA

- ► Next step: the free normed *f*-algebra.
- ▶ Take ρ to be the greatest lattice seminorm on FAFA[E] that is submultiplicative and satisfies $\rho(\delta_x) \leq ||x||$ for all $x \in E$.
- ightharpoonup
 ho is not a norm on ${\rm FAFA}[E]$...
- ▶ ...but it induces a norm on $FAFA[E]/\ker \rho = FNFA[E]$ (denote it by $\|\cdot\|$).
- ► This space, together with the isometric embedding $\eta_E = q \delta_E$, is the free normed f-algebra generated by E.
- ▶ Its completion is FBFA[E].

But wait...

Who is $\ker \rho \subseteq \operatorname{FAFA}[E]$? Can we give a nice description of $\operatorname{FNFA}[E]$? Yes, we can. But first we need a new tool.

Theorem (Structure theorem)

For every Banach f-algebra A there exist a Banach lattice X, a compact Hausdorff space K and a contractive injective lattice-algebra homomorphism $R\colon A\to X_0\oplus_\infty C(K)$.

Theorem (Structure theorem)

For every Banach f-algebra A there exist a Banach lattice X, a compact Hausdorff space K and a contractive injective lattice-algebra homomorphism $R\colon A\to X_0\oplus_\infty C(K)$.

Corollary

Let Φ be an LLA expression. If Φ vanishes on [-1,1], then it also vanishes on the unit ball of every normed f-algebra.

Theorem (Structure theorem)

For every Banach f-algebra A there exist a Banach lattice X, a compact Hausdorff space K and a contractive injective lattice-algebra homomorphism $R\colon A\to X_0\oplus_\infty C(K)$.

Corollary

Let Φ be an LLA expression. If Φ vanishes on [-1,1], then it also vanishes on the unit ball of every normed f-algebra.

Proposition

Let E be a Banach space. Let ρ be the greatest submultiplicative lattice seminorm on ${\rm FAFA}[E]$ such that $\rho(\delta_x) \leq \|x\|$ for all $x \in E$. Then

$$\ker \rho = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

► Its kernel is

$$\ker R = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

► Its kernel is

$$\ker R = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

Wait...This is precisely $\ker \rho!$

▶ So R induces an injective lattice-algebra homomorphism $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ which must be contractive.

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

► Its kernel is

$$\ker R = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

- ▶ So R induces an injective lattice-algebra homomorphism $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ which must be contractive.
- ▶ That's nice...But what about FBFA[E]?

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

► Its kernel is

$$\ker R = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

- ▶ So R induces an injective lattice-algebra homomorphism $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ which must be contractive.
- ▶ That's nice...But what about FBFA[E]? Equivalently, what about the norm in FNFA[E]?

▶ Remember: FAFA[E] does not embed in $C(B_{E^*})$, i.e., the restriction map

$$R \colon \operatorname{FAFA}[E] \longrightarrow C(B_{E^*})$$

$$f \longmapsto f|_{B_{E^*}}$$

is not injective.

► Its kernel is

$$\ker R = \{ f \in \text{FAFA}[E] : f|_{B_{E^*}} = 0 \}.$$

- ▶ So R induces an injective lattice-algebra homomorphism $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ which must be contractive.
- ▶ That's nice...But what about FBFA[E]? Equivalently, what about the norm in FNFA[E]?
- We seriously doubt that a simple, explicit expression for the free norm exists. Still, many things can be said about it. We present them in relation with the "representation problem."

The representation problem

Is the extension of $R \colon \operatorname{FNFA}[E] \to C(B_{E^*})$ to $\operatorname{FBFA}[E]$ injective?

The representation problem

Is the extension of $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ to $\mathrm{FBFA}[E]$ injective? Motivation: $\mathrm{FBL}[E]$ is constructed inside $C(B_{E^*})$.

The representation problem

Is the extension of $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ to $\mathrm{FBFA}[E]$ injective? *Motivation:* $\mathrm{FBL}[E]$ is constructed inside $C(B_{E^*})$.

An algebra A is semiprime if

$$N(A) = \{\, a \in A : ab = 0 \text{ for all } b \in A \,\} = \{0\}.$$

The representation problem

Is the extension of $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ to $\mathrm{FBFA}[E]$ injective? *Motivation:* $\mathrm{FBL}[E]$ is constructed inside $C(B_{E^*})$.

An algebra A is semiprime if

$$N(A) = \{ a \in A : ab = 0 \text{ for all } b \in A \} = \{0\}.$$

Theorem

Let E be a Banach space. The inclusion map $\mathrm{FNFA}[E] \to C(B_{E^*})$ extends to an injective lattice-algebra homomorphism $\mathrm{FBFA}[E] \to C(B_{E^*})$ if and only if $\mathrm{FBFA}[E]$ is semiprime.

The representation problem

Is the extension of $R \colon \mathrm{FNFA}[E] \to C(B_{E^*})$ to $\mathrm{FBFA}[E]$ injective? *Motivation:* $\mathrm{FBL}[E]$ is constructed inside $C(B_{E^*})$.

An algebra A is semiprime if

$$N(A) = \{ a \in A : ab = 0 \text{ for all } b \in A \} = \{0\}.$$

Theorem

Let E be a Banach space. The inclusion map $\mathrm{FNFA}[E] \to C(B_{E^*})$ extends to an injective lattice-algebra homomorphism $\mathrm{FBFA}[E] \to C(B_{E^*})$ if and only if $\mathrm{FBFA}[E]$ is semiprime.

To find out whether ${\rm FBFA}[E]$ is semiprime, we still need to be able to say something about the norm, at least for some E.

Theorem

Let E be a finite-dimensional Banach space. The free Banach f-algebra ${\rm FBFA}[E]$ is lattice-algebra isomorphic to $C([0,1]\times S_{E^*})$ with the pointwise order, and product

$$(f \star g)(r, u) = rf(r, u)g(r, u).$$

Theorem

Let E be a finite-dimensional Banach space. The free Banach f-algebra ${\rm FBFA}[E]$ is lattice-algebra isomorphic to $C([0,1]\times S_{E^*})$ with the pointwise order, and product

$$(f \star g)(r, u) = rf(r, u)g(r, u).$$

Definition

Let E be a Banach space. For every $f \in \mathrm{FBFA}[E]$, define $\tau_E(f)$ to be the least positive number such that, if A is a semiprime finite-dimensional Banach f-algebra, and $T \colon E \to A$ is contractive, then $\tau_E(f) \geq \|\hat{T}f\|$ for every $f \in \mathrm{FBFA}[E]$.

Theorem

Let E be a finite-dimensional Banach space. The free Banach f-algebra FBFA[E] is lattice-algebra isomorphic to $C([0,1]\times S_{E^*})$ with the pointwise order, and product

$$(f \star g)(r, u) = rf(r, u)g(r, u).$$

Definition

Let E be a Banach space. For every $f \in \mathrm{FBFA}[E]$, define $\tau_E(f)$ to be the least positive number such that, if A is a semiprime finite-dimensional Banach f-algebra, and $T \colon E \to A$ is contractive, then $\tau_E(f) \geq \|\hat{T}f\|$ for every $f \in \mathrm{FBFA}[E]$.

Theorem

If E is a finite-dimensional Banach space, then $||f|| = \tau_E(f)$ for every $f \in \text{FBFA}[E]$.

The usefulness of τ_E

I admit it: τ_E is still far from an explicit expression of the norm.

The usefulness of τ_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

The usefulness of au_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose τ_E defines a norm on ${\rm FBFA}[E]$. Then ${\rm FBFA}[E]$ is semiprime (and therefore representable in $C(B_{E^*})$).

The usefulness of τ_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose τ_E defines a norm on ${\rm FBFA}[E]$. Then ${\rm FBFA}[E]$ is semiprime (and therefore representable in $C(B_{E^*})$).

Hence, when E is finite-dimensional, ${\rm FBFA}[E]$ is representable.

The usefulness of au_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose τ_E defines a norm on ${\rm FBFA}[E]$. Then ${\rm FBFA}[E]$ is semiprime (and therefore representable in $C(B_{E^*})$).

Hence, when E is finite-dimensional, $\ensuremath{\mathrm{FBFA}}[E]$ is representable. We already knew this!

The usefulness of au_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose τ_E defines a norm on ${\rm FBFA}[E]$. Then ${\rm FBFA}[E]$ is semiprime (and therefore representable in $C(B_{E^*})$).

Hence, when E is finite-dimensional, ${\rm FBFA}[E]$ is representable. We already knew this! But with this technique, we can go further.

The usefulness of τ_E

I admit it: τ_E is still far from an explicit expression of the norm. However, it is sufficient for our purposes.

Proposition

Let E be a Banach space. Suppose τ_E defines a norm on ${\rm FBFA}[E]$. Then ${\rm FBFA}[E]$ is semiprime (and therefore representable in $C(B_{E^*})$).

Hence, when E is finite-dimensional, ${\rm FBFA}[E]$ is representable. We already knew this! But with this technique, we can go further.

Proposition

If E is contractively complemented in a space with a monotone basis, then τ_E coincides with the free norm in ${\rm FBFA}[E]$.

Being representable is very useful to prove facts about the FBFA.

Being representable is very useful to prove facts about the FBFA.

Proposition

FNFA[E] is order dense in $C(B_{E^*})$. Hence, if FBFA[E] is representable, then FNFA[E] is order dense in FBFA[E].

Being representable is very useful to prove facts about the FBFA.

Proposition

FNFA[E] is order dense in $C(B_{E^*})$. Hence, if FBFA[E] is representable, then FNFA[E] is order dense in FBFA[E].

If $\ensuremath{\mathrm{FBFA}}[E]$ and $\ensuremath{\mathrm{FBFA}}[F]$ are representable, the extension operator

$$E \xrightarrow{T} F$$

$$\uparrow_{\eta_E} \downarrow \qquad \qquad \downarrow_{\eta_F}$$

$$FBFA[E] \xrightarrow{\bar{T}} FBFA[F]$$

is given by $\bar{T}f = f \circ T^*$.

Being representable is very useful to prove facts about the FBFA.

Proposition

FNFA[E] is order dense in $C(B_{E^*})$. Hence, if FBFA[E] is representable, then FNFA[E] is order dense in FBFA[E].

If $\ensuremath{\mathrm{FBFA}}[E]$ and $\ensuremath{\mathrm{FBFA}}[F]$ are representable, the extension operator

$$E \xrightarrow{T} F$$

$$\uparrow_{IE} \downarrow \qquad \qquad \downarrow \eta_{F}$$

$$FBFA[E] \xrightarrow{\bar{T}} FBFA[F]$$

is given by $\bar{T}f=f\circ T^*.$ This is useful to study the properties of $\bar{T}.$

Being representable is very useful to prove facts about the FBFA.

Proposition

FNFA[E] is order dense in $C(B_{E^*})$. Hence, if FBFA[E] is representable, then FNFA[E] is order dense in FBFA[E].

If $\ensuremath{\mathrm{FBFA}}[E]$ and $\ensuremath{\mathrm{FBFA}}[F]$ are representable, the extension operator

$$\begin{array}{ccc} E & \xrightarrow{T} & F \\ \eta_E \Big\downarrow & & & \downarrow \eta_F \\ \text{FBFA}[E] & \xrightarrow{\bar{T}} & \text{FBFA}[F] \end{array}$$

is given by $\bar{T}f=f\circ T^*$. This is useful to study the properties of \bar{T} . These are not as clean as in the case of the FBL (for instance, T bijective does not imply \bar{T} injective!).

References

- D. Muñoz-Lahoz and P. Tradacete "Free Banach *f*-algebras" In preparation
- Laura Martignon
 "Banach f-algebras and Banach lattice algebras with unit"
 Bol. Soc. Bras. Mat. 11 (1), pp. 11–18 (1980)
- Ben de Pagter
 "f-algebras and orthomorphisms"
 PhD thesis (1981)
- Marcel de Jeu

 "Free vector lattices and free vector lattice algebras"

 Proc. from the conference Positivity X, pp. 103–139 (2021)
- T. Oikhberg, M. A. Taylor, P. Tradacete and V. G. Troitsky "Free Banach lattices"

 J. Eur. Math. Soc. (2024), published online first