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f-algebras

Definition
A vector lattice algebra X (that is, a vector lattice together with a
real algebra structure for which the product of positive elements is
positive) is an f-algebra if, for every a, b ∈ X with a ∧ b = 0,

(ac) ∧ b = 0 = (ca) ∧ b for all c ∈ X+.

Example (f-algebras)

1. Every vector lattice X with the zero product (denote it by
X0).

2. Orth(X) for every vector lattice X.
3. C(K) with pointwise order and product.
4. D′′, where D is a commuting set of bounded Hermitian

operators on a Hilbert space.
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Banach f-algebras

Definition
An f-algebra is said to be a Banach f-algebra if it has a norm that
makes it into a Banach lattice and a Banach algebra.

Example (Banach f-algebras)

1. Every Banach lattice with the zero product.
2. C(K) with pointwise order and product f ⋆ g = wfg, for a

fixed w ∈ (BC(K))+.
3. ℓ1 with pointwise order and product.
4. Direct sums, quotients (by closed lattice-algebraic ideals) and

ultraproducts of Banach f-algebras.

GOAL
To study free objects in this category. But why?
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Free Banach lattices

Because free Banach lattices have proven to be very useful.

Definition
Let E be a Banach space. The free Banach lattice generated by E
is a Banach lattice FBL[E] together with an isometric embedding
δE : E → FBL[E] such that, for every Banach lattice X and every
operator T : E → X, there exists a unique lattice homomorphism
T̂ : FBL[E] → X with ‖T̂‖ = ‖T‖ making the following diagram
commutative:

E X

FBL[E]

T

δE
T̂
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A general abstract argument (due to V. Troitsky and M. de Jeu)
shows that this object exists. Can we construct it?
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Abstract construction (I): FAFA

Definition
A lattice, linear and algebraic (LLA) expression is a formal
expression Φ[t1, . . . , tn] involving finitely many variables, the linear
and lattice operations, and a product. An LLA expression is said to
vanish on a vector lattice algebra X if Φ(x1, . . . , xn) = 0 for every
x1, . . . , xn ∈ X.

Theorem (M. Henriksen and J. R. Isbell)
Let Φ be an LLA expression. If Φ vanishes on R, then it vanishes
on every Archimedean f-algebra.
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Abstract construction (II): FAFA

Corollary
Let E be a vector space. The free Archimedean f-algebra
generated by E is

FAFA[E] = VLA{δx : x ∈ E} ⊆ RE#
,

where δx(ω) = ω(x) for every ω ∈ E#, together with the linear
map δE : E → FAFA[E].

▶ Not all elements of FAFA[E] are positively homogeneous
functions! (Compare with FVL[E].)

▶ Hence, even if E is normed, we cannot represent FAFA[E]
inside C(BE∗) (because there exist non-zero elements of
FAFA[E] that vanish on BE∗).

▶ Keep this fact in mind; I will surprise you later.
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Abstract construction (III): FNFA and FBFA

Construction of FNFA and FBFA
▶ Next step: the free normed f-algebra.
▶ Take ρ to be the greatest lattice seminorm on FAFA[E] that

is submultiplicative and satisfies ρ(δx) ≤ ‖x‖ for all x ∈ E.
▶ ρ is not a norm on FAFA[E]…
▶ …but it induces a norm on FAFA[E]/ ker ρ = FNFA[E]

(denote it by ‖·‖).
▶ This space, together with the isometric embedding ηE = qδE ,

is the free normed f-algebra generated by E.
▶ Its completion is FBFA[E].

But wait…
Who is ker ρ ⊆ FAFA[E]? Can we give a nice description of
FNFA[E]? Yes, we can. But first we need a new tool.
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A new tool to compute ker ρ

Theorem (Structure theorem)
For every Banach f-algebra A there exist a Banach lattice X, a
compact Hausdorff space K and a contractive injective
lattice-algebra homomorphism R : A → X0 ⊕∞ C(K).

Corollary
Let Φ be an LLA expression. If Φ vanishes on [−1, 1], then it also
vanishes on the unit ball of every normed f-algebra.

Proposition
Let E be a Banach space. Let ρ be the greatest submultiplicative
lattice seminorm on FAFA[E] such that ρ(δx) ≤ ‖x‖ for all x ∈ E.
Then

ker ρ = { f ∈ FAFA[E] : f |BE∗ = 0 }.
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This is very useful!

▶ Remember: FAFA[E] does not embed in C(BE∗), i.e., the
restriction map

R : FAFA[E] −→ C(BE∗)
f 7−→ f |BE∗

is not injective.
▶ Its kernel is

kerR = { f ∈ FAFA[E] : f |BE∗ = 0 }.

Wait…This is precisely ker ρ!
▶ So R induces an injective lattice-algebra homomorphism

R : FNFA[E] → C(BE∗) which must be contractive.
▶ That’s nice…But what about FBFA[E]? Equivalently, what

about the norm in FNFA[E]?
▶ We seriously doubt that a simple, explicit expression for the

free norm exists. Still, many things can be said about it. We
present them in relation with the “representation problem.”
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The representation problem

The representation problem
Is the extension of R : FNFA[E] → C(BE∗) to FBFA[E]
injective?

Motivation: FBL[E] is constructed inside C(BE∗).

An algebra A is semiprime if

N(A) = { a ∈ A : ab = 0 for all b ∈ A } = {0}.

Theorem
Let E be a Banach space. The inclusion map FNFA[E] → C(BE∗)
extends to an injective lattice-algebra homomorphism
FBFA[E] → C(BE∗) if and only if FBFA[E] is semiprime.

To find out whether FBFA[E] is semiprime, we still need to be
able to say something about the norm, at least for some E.
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The finite-dimensional case

Theorem
Let E be a finite-dimensional Banach space. The free Banach
f-algebra FBFA[E] is lattice-algebra isomorphic to C([0, 1]× SE∗)
with the pointwise order, and product

(f ⋆ g)(r, u) = rf(r, u)g(r, u).

Definition
Let E be a Banach space. For every f ∈ FBFA[E], define τE(f)
to be the least positive number such that, if A is a semiprime
finite-dimensional Banach f-algebra, and T : E → A is contractive,
then τE(f) ≥ ‖T̂ f‖ for every f ∈ FBFA[E].

Theorem
If E is a finite-dimensional Banach space, then ‖f‖ = τE(f) for
every f ∈ FBFA[E].
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The usefulness of τE

I admit it: τE is still far from an explicit expression of the norm.

However, it is sufficient for our purposes.

Proposition
Let E be a Banach space. Suppose τE defines a norm on
FBFA[E]. Then FBFA[E] is semiprime (and therefore
representable in C(BE∗)).

Hence, when E is finite-dimensional, FBFA[E] is representable.
We already knew this! But with this technique, we can go further.

Proposition
If E is contractively complemented in a space with a monotone
basis, then τE coincides with the free norm in FBFA[E].
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Other properties

Being representable is very useful to prove facts about the FBFA.

Proposition
FNFA[E] is order dense in C(BE∗). Hence, if FBFA[E] is
representable, then FNFA[E] is order dense in FBFA[E].

If FBFA[E] and FBFA[F ] are representable, the extension
operator

E F

FBFA[E] FBFA[F ]

T

ηE ηF

T̄

is given by T̄ f = f ◦ T ∗. This is useful to study the properties of
T̄ . These are not as clean as in the case of the FBL (for instance,
T bijective does not imply T̄ injective!).
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