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Subspace/embedding problem for FBL(p)

Let F be a closed subspace of a Banach space E

We have a commutative diagram

FBL(p)[F ]
ι−→ FBL(p)[E ]

↑ ↑
F

ι−→ E

Here the embedding ι induces an injective lattice homomorphism ι.

Theorem. [Oikhberg, Taylor, Tradacete, Troitsky] TFAE.

1. ι is a lattice isomorphic embedding.

2. Every T : F → Lp(µ) has a bounded extension
T̃ : E → Lp(µ).

It is enough to extend maps T : F → `p(n) with control of norms.
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A result of Pisier

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that
is p-convex. Then every positive S : Y → Lp(µ) has a positive
extension S̃ : X → Lp(µ).

For FBL(↑p), Lp should be replaced by Lp,∞.

Pisier for Lp,∞? That is, if Y is a closed sublattice of a Banach
lattice X with an upper p-estimate, is it true that every positive
S : Y → Lp,∞(µ) has a positive extension S̃ : X → Lp,∞(µ)?

Observe that Pisier for Lp,∞ implies injectivity of Lp,∞(µ) in the
category of Weak Lp spaces with positive maps. That is, every
lattice isomorphic copy of Lp,∞(µ) in a Weak Lp space is positively
complemented.
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No counterpart of Pisier for Weak Lp

Proposition. There is a lattice isomorphic copy of `p,∞ in `p,∞

that is not complemented (by any projection, positive or
otherwise).

The “subspace/embedding” problem for FBL(↑p) was eventually
solved by Pedro using pushouts.

Theorem. Let F be a closed subspace of a Banach space E , The
embedding ι induces a lattice homomorphism
ι : FBL(↑p)[F ]→ FBL(↑p)[E ]. TFAE

1. ι : FBL(↑p)[F ]→ FBL(↑p)[E ] is a lattice embedding.

2. ∀ T : F → X , where X has upper p-estimate, ∃ Y with upper
p-estimate, ∃j : X → Y lattice isomorphic embedding and
S : E → Y such that Sι extends jT .

Works also for FBL(p) and Lp. It gives an alternative solution of
the “subspace/embedding” for FBL(p) without using Piser.
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Uncomplemented `p,∞

First notice that

(⊕`p,∞)∞ ≤ (⊕`p,∞(n))∞ ≤ `p,∞.

So it is enough to find an uncomplemented lattice copy of `p,∞ in
(⊕`p,∞)∞.

`p,∞(n) 7→ `p,∞ : ei 7→ k
−1/p
n χAi

,A1, . . . ,An disjoint , |Ai | = kn.

Imagine an element of (⊕`p,∞)∞ as an infinite matrix

a = (aij) = (c1, c2, . . . ), cj =

a1j
a2j
...

 . ‖a‖ = sup
j
‖cj‖p,∞.

Let {In : n ∈ N} be a family of finite subsets of N. Assume that for
any finite subset J of N, there exists n such that I ⊆ J and
|I | ≥ |J|/2.
Then b 7→ (bχI1 , bχI2 , . . . ) : `p∞ → (⊕`p,∞)∞ is a lattice
isomorphic embedding.
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Let {Ij : n ∈ N} be a family of finite subsets of N. Assume that for
any finite subset J of N, there exists n such that I ⊆ J and
|I | ≥ |J|/2.

Then T : b 7→ (bχI1 , bχI2 , . . . ) : `p∞ → (⊕`p,∞)∞ is a lattice
isomorphic embedding.

b =

b1
b2
...

, ‖b‖p,∞ ∼ supn n
1/pb∗n.

∃ J finite subset of N, |J| = n0, |bi | � ‖b‖p,∞n
−1/p
0 for all i ∈ J.

Choose Ij so that Ij ⊆ J and |Ij | ≥ |J|/2.
Then ‖Tb‖ ≥ ‖bχIj‖p,∞ � ‖b‖p,∞.

A convenient family {In : n ∈ N} is the Schreier family S.
S = {I ⊆ N : |I | ≤ min I}. S is countable.
There is an associated Schreier space S consisting of all real
sequences (ci ) such that ‖(ci )‖S = supI∈S |

∑
i∈I ci |.

S is an unconditional sequence space. The unit vector basis is a
weakly null sequence.
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Assume that Y := T (`p,∞) is complemented in X := (⊕`p,∞)∞.
∃(x∗i ) ⊆ X ∗ that implements the projection, so that the map below
is onto and x∗i (Tei ) = 1.

X
P→ Y ↔ `p,∞

x −→ (x∗i (x))

Note that (x∗i ) is equivalent to the uvb of `p
′,1 and thus

unconditional in particular.
Let z∗i = x∗i |i-th row. (z∗i ) is disjoint in X ∗.
For finitely supported (bi ),

‖(bi )‖p′,1 ∼ ‖
∑

bix
∗
i ‖ ∼

∫ 1
0 ‖

∑
ri (t)bix

∗
i ‖ dt

Khintchine
� ‖

√∑
|bix∗i |2‖ ≥ ‖

√∑
|biz∗i |2‖ ∼ ‖

∑
biz
∗
i ‖.

Thus the map

Q : X → `p,∞, x 7→ (z∗i (x)) is bounded.

Also yi := Tei lives on the i-th row. So

Qyi = z∗i (yi ) = x∗i (yi ) = x∗i (Tei ) = 1.
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Since z∗i lives on the i-th row, we can regard it as y∗i ∈ (`∞)∗.

Suppose that (ui ) ⊆ `∞, ‖(
∑
|ui |p)1/p‖∞ ≤ 1.

Let vi ∈ X be ui placed on the i-th row of X .
Then for any I ⊆ N,

|
∑

i∈I y
∗
i (ui )| = |(

∑
i∈I z

∗
i )(

∑
i∈I vi )|

≤ ‖
∑

i∈I z
∗
i ‖ ‖

∑
i∈I vi‖.

Now ‖
∑

i∈I z
∗
i ‖ ≤ ‖χI‖p′,1 = |I |1/p′ .

‖j-th column of
∑

i∈I vi‖p,∞ ≤ j-th term of (
∑
|ui |p)1/p

Thus

‖
∑

i∈I vi‖ ≤ ‖(
∑
|ui |p)1/p‖∞ ≤ 1.

Hence |
∑

i∈I y
∗
i (ui )| ≤ |I |1/p

′
if ‖(

∑
|ui |p)1/p‖∞ ≤ 1.

So ‖(
∑

i∈I |y∗i |p
′
)1/p

′‖(`∞)∗ � |I |1/p
′
.

This shows that (y∗i ) is uniformly integrable in the AL-space (`∞)∗.
Therefore, (y∗i ) is relatively weakly compact.
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Recall that yi = Tei ∈ X lives on the i-th row. We may regard it
as an element zi ∈ `∞.

‖
∑

aizi‖∞ = supj |
∑

i∈Sj ai | = ‖(ai )‖S .

So (zi ) is equivalent to the unit vector basis of the Schreier space
S .
This makes (zi ) weakly null (in `∞).
Recall that (y∗i ) is relatively weakly compact in (`∞)∗.
`∞ has the Dunford-Pettis property =⇒ y∗i (z∗i )→ 0.
However, (y∗i ∼ z∗i , zi ∼ yi )

y∗i (zi ) = z∗i (yi ) = z∗i (Tei ) = 1.

Contradiction!

The End
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