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We have a commutative diagram

FBLP[F] - FBLPE]
T )

L

F — E

Here the embedding ¢ induces an injective lattice homomorphism 7.
Theorem. [Oikhberg, Taylor, Tradacete, Troitsky] TFAE.
1. 7 is a lattice isomorphic embedding.

2. Every T : F — LP(u) has a bounded extension
T:E— LP(p).

It is enough to extend maps T : F — ¢P(n) with control of norms.
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is p-convex. Then every positive S : Y — LP(u) has a positive
extension S : X — LP(pu).

For FBLUTP), [P should be replaced by LP°.

Pisier for LP°°? That is, if Y is a closed sublattice of a Banach
lattice X with an upper p-estimate, is it true that every positive
S: Y — LP°°(u) has a positive extension S : X — LP™°(u)?

Observe that Pisier for LP>° implies injectivity of LP*°(u) in the
category of Weak LP spaces with positive maps. That is, every
lattice isomorphic copy of LP°°(u) in a Weak LP space is positively
complemented.
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solved by Pedro using pushouts.

Theorem. Let F be a closed subspace of a Banach space E, The
embedding ¢ induces a lattice homomorphism
7: FBLUP)[F] — FBL(P)[E]. TFAE
1. 7: FBLUP)[F] — FBLUP)[E] is a lattice embedding.
2.V T:F— X, where X has upper p-estimate, 3 Y with upper
p-estimate, 3j : X — Y lattice isomorphic embedding and
S : E — Y such that S¢ extends jT.
Works also for FBL(P) and LP. It gives an alternative solution of
the “subspace/embedding” for FBL(P) without using Piser.
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Imagine an element of (®¢P>°), as an infinite matrix

alj

a=(ay) = (e, e, )i = | %2 | . [lall = sup [l¢jlp.00-
: J

Let {/, : n € N} be a family of finite subsets of N. Assume that for
any finite subset J of N, there exists n such that / C J and

1] > [J]/2.

Then b+ (bxy,, bXp,...) : P — (BLP>) is a lattice

isomorphic embedding.
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Let {/; : n € N} be a family of finite subsets of N. Assume that for

any finite subset J of N, there exists n such that / C J and
1] = [J]/2.
Then T : b (bxy, bxp,...): P — (BIP>) is a lattice
isomorphic embedding.

by
b= | b2 |, |Ibllp.sc ~ sup, n*/Pb},

3 J finite subset of N, |J| = no, |bj| = [|bl|p.ceng /” for all i € J.

Choose /; so that /; C J and |/;| > |J|/2.
Then || Tbl| = [ bxylp,co = [l p,c0-

A convenient family {/, : n € N} is the Schreier family S.
S={lICN:|l[|<minl}. S is countable.

There is an associated Schreier space S consisting of all real
sequences (¢;) such that ||(¢;)|ls = supjes | X ic Cil-

S is an unconditional sequence space. The unit vector basis is a
weakly null sequence.
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