Denny Leung

Positivity XII Tunisia, May 2025

Let F be a closed subspace of a Banach space E

Let F be a closed subspace of a Banach space EWe have a commutative diagram

$$FBL^{(p)}[F] \xrightarrow{\bar{\iota}} FBL^{(p)}[E]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\iota} E$$

Let F be a closed subspace of a Banach space E We have a commutative diagram

$$FBL^{(p)}[F] \xrightarrow{\bar{\iota}} FBL^{(p)}[E]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\iota} E$$

Here the embedding ι induces an injective lattice homomorphism $\bar{\iota}$.

Let F be a closed subspace of a Banach space E

We have a commutative diagram

$$FBL^{(p)}[F] \xrightarrow{\bar{\iota}} FBL^{(p)}[E]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\iota} E$$

Here the embedding ι induces an injective lattice homomorphism $\bar{\iota}$.

Theorem. [Oikhberg, Taylor, Tradacete, Troitsky] TFAE.

- 1. $\bar{\iota}$ is a lattice isomorphic embedding.
- 2. Every $T: F \to L^p(\mu)$ has a bounded extension $\widetilde{T}: E \to L^p(\mu)$.

Let F be a closed subspace of a Banach space E

We have a commutative diagram

$$FBL^{(p)}[F] \xrightarrow{\bar{\iota}} FBL^{(p)}[E]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\iota} E$$

Here the embedding ι induces an injective lattice homomorphism $\bar{\iota}.$

Theorem. [Oikhberg, Taylor, Tradacete, Troitsky] TFAE.

- 1. $\bar{\iota}$ is a lattice isomorphic embedding.
- 2. Every $T: F \to L^p(\mu)$ has a bounded extension $\widetilde{T}: E \to L^p(\mu)$.

It is enough to extend maps $T: F \to \ell^p(n)$ with control of norms.

Important ingredient in the proof of the theorem:

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

For $FBL^{(\uparrow p)}$, L^p should be replaced by $L^{p,\infty}$.

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

For $FBL^{(\uparrow p)}$, L^p should be replaced by $L^{p,\infty}$.

Pisier for $L^{p,\infty}$?

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

For $FBL^{(\uparrow p)}$, L^p should be replaced by $L^{p,\infty}$.

Pisier for $L^{p,\infty}$? That is, if Y is a closed sublattice of a Banach lattice X with an upper p-estimate, is it true that every positive $S: Y \to L^{p,\infty}(\mu)$ has a positive extension $\widetilde{S}: X \to L^{p,\infty}(\mu)$?

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

For $FBL^{(\uparrow p)}$, L^p should be replaced by $L^{p,\infty}$.

Pisier for $L^{p,\infty}$? That is, if Y is a closed sublattice of a Banach lattice X with an upper p-estimate, is it true that every positive $S: Y \to L^{p,\infty}(\mu)$ has a positive extension $\widetilde{S}: X \to L^{p,\infty}(\mu)$?

Observe that Pisier for $L^{p,\infty}$ implies injectivity of $L^{p,\infty}(\mu)$ in the category of Weak L^p spaces with positive maps.

Important ingredient in the proof of the theorem:

Theorem. Let Y be a closed sublattice of a Banach lattice X that is p-convex. Then every positive $S: Y \to L^p(\mu)$ has a positive extension $\widetilde{S}: X \to L^p(\mu)$.

For $FBL^{(\uparrow p)}$, L^p should be replaced by $L^{p,\infty}$.

Pisier for $L^{p,\infty}$? That is, if Y is a closed sublattice of a Banach lattice X with an upper p-estimate, is it true that every positive $S: Y \to L^{p,\infty}(\mu)$ has a positive extension $\widetilde{S}: X \to L^{p,\infty}(\mu)$?

Observe that Pisier for $L^{p,\infty}$ implies injectivity of $L^{p,\infty}(\mu)$ in the category of Weak L^p spaces with positive maps. That is, every lattice isomorphic copy of $L^{p,\infty}(\mu)$ in a Weak L^p space is positively complemented.

Proposition. There is a lattice isomorphic copy of $\ell^{p,\infty}$ in $\ell^{p,\infty}$ that is not complemented (by any projection, positive or otherwise).

Proposition. There is a lattice isomorphic copy of $\ell^{p,\infty}$ in $\ell^{p,\infty}$ that is not complemented (by any projection, positive or otherwise).

The "subspace/embedding" problem for $FBL^{(\uparrow p)}$ was eventually solved by Pedro using pushouts.

Proposition. There is a lattice isomorphic copy of $\ell^{p,\infty}$ in $\ell^{p,\infty}$ that is not complemented (by any projection, positive or otherwise).

The "subspace/embedding" problem for $FBL^{(\uparrow p)}$ was eventually solved by Pedro using pushouts.

Theorem. Let F be a closed subspace of a Banach space E, The embedding ι induces a lattice homomorphism

- $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$. TFAE
 - 1. $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$ is a lattice embedding.
 - 2. $\forall T: F \rightarrow X$, where X has upper p-estimate, $\exists Y$ with upper p-estimate, $\exists j: X \rightarrow Y$ lattice isomorphic embedding and $S: E \rightarrow Y$ such that $S\iota$ extends jT.

Proposition. There is a lattice isomorphic copy of $\ell^{p,\infty}$ in $\ell^{p,\infty}$ that is not complemented (by any projection, positive or otherwise).

The "subspace/embedding" problem for $FBL^{(\uparrow p)}$ was eventually solved by Pedro using pushouts.

Theorem. Let F be a closed subspace of a Banach space E, The embedding ι induces a lattice homomorphism

- $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$. TFAE
 - 1. $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$ is a lattice embedding.
 - 2. $\forall T: F \rightarrow X$, where X has upper p-estimate, $\exists Y$ with upper p-estimate, $\exists j: X \rightarrow Y$ lattice isomorphic embedding and $S: E \rightarrow Y$ such that $S\iota$ extends jT.

Works also for $FBL^{(p)}$ and L^p .

Proposition. There is a lattice isomorphic copy of $\ell^{p,\infty}$ in $\ell^{p,\infty}$ that is not complemented (by any projection, positive or otherwise).

The "subspace/embedding" problem for $FBL^{(\uparrow p)}$ was eventually solved by Pedro using pushouts.

Theorem. Let F be a closed subspace of a Banach space E, The embedding ι induces a lattice homomorphism

- $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$. TFAE
 - 1. $\bar{\iota}: FBL^{(\uparrow p)}[F] \to FBL^{(\uparrow p)}[E]$ is a lattice embedding.
 - 2. $\forall T: F \rightarrow X$, where X has upper p-estimate, $\exists Y$ with upper p-estimate, $\exists j: X \rightarrow Y$ lattice isomorphic embedding and $S: E \rightarrow Y$ such that $S\iota$ extends jT.

Works also for $FBL^{(p)}$ and L^p . It gives an alternative solution of the "subspace/embedding" for $FBL^{(p)}$ without using Piser.

First notice that

$$(\oplus \ell^{p,\infty})_{\infty} \leq (\oplus \ell^{p,\infty}(n))_{\infty} \leq \ell^{p,\infty}.$$

First notice that

$$(\oplus \ell^{p,\infty})_{\infty} \leq (\oplus \ell^{p,\infty}(n))_{\infty} \leq \ell^{p,\infty}.$$

So it is enough to find an uncomplemented lattice copy of $\ell^{p,\infty}$ in $(\oplus \ell^{p,\infty})_{\infty}$.

$$\ell^{p,\infty}(n)\mapsto \ell^{p,\infty}: e_i\mapsto k_n^{-1/p}\chi_{A_i}, A_1,\ldots, A_n \text{ disjoint }, |A_i|=k_n.$$

First notice that

$$(\oplus \ell^{p,\infty})_{\infty} \leq (\oplus \ell^{p,\infty}(n))_{\infty} \leq \ell^{p,\infty}$$

So it is enough to find an uncomplemented lattice copy of $\ell^{p,\infty}$ in $(\oplus \ell^{p,\infty})_{\infty}$.

$$\ell^{p,\infty}(n)\mapsto \ell^{p,\infty}: e_i\mapsto k_n^{-1/p}\chi_{A_i}, A_1,\ldots, A_n \text{ disjoint }, |A_i|=k_n.$$

Imagine an element of $(\oplus \ell^{p,\infty})_\infty$ as an infinite matrix

$$a = (a_{ij}) = (c_1, c_2, \dots), c_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \end{pmatrix}. ||a|| = \sup_{j} ||c_j||_{p,\infty}.$$

First notice that

$$(\oplus \ell^{p,\infty})_{\infty} \leq (\oplus \ell^{p,\infty}(n))_{\infty} \leq \ell^{p,\infty}.$$

So it is enough to find an uncomplemented lattice copy of $\ell^{p,\infty}$ in $(\oplus \ell^{p,\infty})_{\infty}$.

$$\ell^{p,\infty}(n)\mapsto \ell^{p,\infty}: e_i\mapsto k_n^{-1/p}\chi_{A_i}, A_1,\ldots, A_n \text{ disjoint }, |A_i|=k_n.$$

Imagine an element of $(\oplus \ell^{p,\infty})_\infty$ as an infinite matrix

$$a = (a_{ij}) = (c_1, c_2, \dots), c_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \end{pmatrix}. ||a|| = \sup_{j} ||c_j||_{p,\infty}.$$

Let $\{I_n : n \in \mathbb{N}\}$ be a family of finite subsets of \mathbb{N} . Assume that for any finite subset J of \mathbb{N} , there exists n such that $I \subseteq J$ and $|I| \ge |J|/2$.

First notice that

$$(\oplus \ell^{p,\infty})_{\infty} \leq (\oplus \ell^{p,\infty}(n))_{\infty} \leq \ell^{p,\infty}.$$

So it is enough to find an uncomplemented lattice copy of $\ell^{p,\infty}$ in $(\oplus \ell^{p,\infty})_{\infty}$.

$$\ell^{p,\infty}(n)\mapsto \ell^{p,\infty}: e_i\mapsto k_n^{-1/p}\chi_{A_i}, A_1,\ldots, A_n \text{ disjoint }, |A_i|=k_n.$$

Imagine an element of $(\oplus \ell^{p,\infty})_\infty$ as an infinite matrix

$$a = (a_{ij}) = (c_1, c_2, \dots), c_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \end{pmatrix}. ||a|| = \sup_{j} ||c_j||_{p,\infty}.$$

Let $\{I_n : n \in \mathbb{N}\}$ be a family of finite subsets of \mathbb{N} . Assume that for any finite subset J of \mathbb{N} , there exists n such that $I \subseteq J$ and $|I| \ge |J|/2$.

Then $b\mapsto (b\chi_{I_1},b\chi_{I_2},\dots):\ell^{p\infty}\to (\oplus\ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$$
,

Then $T:b\mapsto (b\chi_{I_1},b\chi_{I_2},\dots):\ell^{p\infty}\to (\oplus\ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 $\exists J \text{ finite subset of } \mathbb{N}, |J| = n_0, |b_i| \succeq ||b||_{p,\infty} n_0^{-1/p} \text{ for all } i \in J.$

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 $\exists J \text{ finite subset of } \mathbb{N}, \ |J| = n_0, \ |b_i| \succeq ||b||_{p,\infty} n_0^{-1/p} \text{ for all } i \in J.$ Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \ \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$.

Then $||Tb|| \geq ||b\chi_{I_j}||_{\rho,\infty} \succeq ||b||_{\rho,\infty}$.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \ \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$. Then $||Tb|| \ge ||b\chi_{I_i}||_{p,\infty} \succeq ||b||_{p,\infty}$.

A convenient family $\{I_n : n \in \mathbb{N}\}$ is the Schreier family S.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$.

Then $||Tb|| \geq ||b\chi_{I_j}||_{p,\infty} \succeq ||b||_{p,\infty}$.

A convenient family $\{I_n : n \in \mathbb{N}\}$ is the *Schreier family* S. $S = \{I \subset \mathbb{N} : |I| < \min I\}$.

Let $\{I_j: n \in \mathbb{N}\}$ be a family of finite subsets of \mathbb{N} . Assume that for any finite subset J of \mathbb{N} , there exists n such that $I \subseteq J$ and $|I| \ge |J|/2$.

Then $T: b \mapsto (b\chi_{I_1}, b\chi_{I_2}, \dots): \ell^{p\infty} \to (\oplus \ell^{p,\infty})_{\infty}$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \ \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$.

Then $||Tb|| \geq ||b\chi_{I_j}||_{p,\infty} \succeq ||b||_{p,\infty}$.

A convenient family $\{I_n : n \in \mathbb{N}\}$ is the *Schreier family* S.

 $S = \{I \subseteq \mathbb{N} : |I| \le \min I\}$. S is countable.

Let $\{I_j: n \in \mathbb{N}\}$ be a family of finite subsets of \mathbb{N} . Assume that for any finite subset J of \mathbb{N} , there exists n such that $I \subseteq J$ and $|I| \ge |J|/2$.

Then $T:b\mapsto (b\chi_{I_1},b\chi_{I_2},\dots):\ell^{p\infty}\to (\oplus\ell^{p,\infty})_\infty$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$. Then $||Tb|| \ge ||b\chi_{I_i}||_{p,\infty} \succeq ||b||_{p,\infty}$.

A convenient family $\{I_n : n \in \mathbb{N}\}$ is the Schreier family S.

 $S = \{I \subseteq \mathbb{N} : |I| \le \min I\}$. S is countable.

There is an associated *Schreier space S* consisting of all real sequences (c_i) such that $\|(c_i)\|_S = \sup_{I \in S} |\sum_{i \in I} c_i|$.

Let $\{I_j: n \in \mathbb{N}\}$ be a family of finite subsets of \mathbb{N} . Assume that for any finite subset J of \mathbb{N} , there exists n such that $I \subseteq J$ and $|I| \ge |J|/2$.

Then $T:b\mapsto (b\chi_{I_1},b\chi_{I_2},\dots):\ell^{p\infty}\to (\oplus\ell^{p,\infty})_\infty$ is a lattice isomorphic embedding.

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}, \|b\|_{p,\infty} \sim \sup_n n^{1/p} b_n^*.$$

 \exists J finite subset of \mathbb{N} , $|J| = n_0$, $|b_i| \succeq ||b||_{p,\infty} n_0^{-1/p}$ for all $i \in J$. Choose I_j so that $I_j \subseteq J$ and $|I_j| \ge |J|/2$. Then $||Tb|| \ge ||b\chi_{I_i}||_{p,\infty} \succeq ||b||_{p,\infty}$.

A convenient family $\{I_n : n \in \mathbb{N}\}$ is the Schreier family S.

 $S = \{I \subseteq \mathbb{N} : |I| \le \min I\}$. S is countable.

There is an associated *Schreier space S* consisting of all real sequences (c_i) such that $\|(c_i)\|_S = \sup_{I \in S} |\sum_{i \in I} c_i|$.

 $\ensuremath{\mathcal{S}}$ is an unconditional sequence space. The unit vector basis is a weakly null sequence.

Assume that $Y:=T(\ell^{p,\infty})$ is complemented in $X:=(\oplus \ell^{p,\infty})_{\infty}$.

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let
$$z_i^* = x_i^*|_{i\text{-th row}}$$
.

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i\text{-th row}}$. (z_i^*) is disjoint in X^* .

$$\|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\|$$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

$$\|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| dt$$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i\text{-th row}}$. (z_i^*) is disjoint in X^* .

$$\|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| dt$$
Khintchine
 $\succeq \|\sqrt{\sum |b_i x_i^*|^2}\|$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i\text{-th row}}$. (z_i^*) is disjoint in X^* .

$$\frac{\|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| dt}{\succeq \|\sqrt{\sum |b_i x_i^*|^2}\| \geq \|\sqrt{\sum |b_i z_i^*|^2}\|}$$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

$$\begin{array}{c} \|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| \, dt \\ \overset{\mathsf{Khintchine}}{\succeq} \|\sqrt{\sum |b_i x_i^*|^2}\| \geq \|\sqrt{\sum |b_i z_i^*|^2}\| \sim \|\sum b_i z_i^*\|. \end{array}$$

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

For finitely supported (b_i) ,

$$\begin{array}{c} \|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| \ dt \\ \succeq \|\sqrt{\sum |b_i x_i^*|^2}\| \geq \|\sqrt{\sum |b_i z_i^*|^2}\| \sim \|\sum b_i z_i^*\|. \end{array}$$

Thus the map

$$Q: X \to \ell^{p,\infty}, x \mapsto (z_i^*(x))$$
 is bounded.

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

For finitely supported (b_i) ,

$$\begin{array}{c} \|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| \ dt \\ \succeq \|\sqrt{\sum |b_i x_i^*|^2}\| \geq \|\sqrt{\sum |b_i z_i^*|^2}\| \sim \|\sum b_i z_i^*\|. \end{array}$$

Thus the map

$$Q: X \to \ell^{p,\infty}, \ x \mapsto (z_i^*(x))$$
 is bounded.

Also $y_i := Te_i$ lives on the *i*-th row.

$$X \xrightarrow{P} Y \leftrightarrow \ell^{p,\infty}$$
$$x \longrightarrow (x_i^*(x))$$

Note that (x_i^*) is equivalent to the uvb of $\ell^{p',1}$ and thus unconditional in particular.

Let $z_i^* = x_i^*|_{i-\text{th row}}$. (z_i^*) is disjoint in X^* .

For finitely supported (b_i) ,

$$\begin{array}{c} \|(b_i)\|_{p',1} \sim \|\sum b_i x_i^*\| \sim \int_0^1 \|\sum r_i(t)b_i x_i^*\| \ dt \\ \succeq \|\sqrt{\sum |b_i x_i^*|^2}\| \geq \|\sqrt{\sum |b_i z_i^*|^2}\| \sim \|\sum b_i z_i^*\|. \end{array}$$

Thus the map

$$Q: X \to \ell^{p,\infty}, \ x \mapsto (z_i^*(x))$$
 is bounded.

Also $y_i := Te_i$ lives on the *i*-th row. So

$$Qy_i = z_i^*(y_i) = x_i^*(y_i) = x_i^*(Te_i) = 1.$$

Since z_i^* lives on the *i*-th row, we can regard it as $y_i^* \in (\ell^{\infty})^*$.

Since z_i^* lives on the *i*-th row, we can regard it as $y_i^* \in (\ell^{\infty})^*$. Suppose that $(u_i) \subseteq \ell^{\infty}$, $\|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1$.

Since z_i^* lives on the i-th row, we can regard it as $y_i^* \in (\ell^{\infty})^*$. Suppose that $(u_i) \subseteq \ell^{\infty}$, $\|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1$.

Let $v_i \in X$ be u_i placed on the i-th row of X.

Then for any $I \subseteq \mathbb{N}$,

$$|\sum_{i\in I} y_i^*(u_i)| = |(\sum_{i\in I} z_i^*)(\sum_{i\in I} v_i)|$$

Then for any
$$I \subseteq \mathbb{N}$$
,

$$|\sum_{i\in I} y_i^*(u_i)| = |(\sum_{i\in I} z_i^*)(\sum_{i\in I} v_i)|$$

$$\leq ||\sum_{i\in I} z_i^*|| ||\sum_{i\in I} v_i||.$$

$$|\sum_{i\in I} y_i^*(u_i)| = |(\sum_{i\in I} z_i^*)(\sum_{i\in I} v_i)| \le ||\sum_{i\in I} z_i^*|| ||\sum_{i\in I} v_i||.$$

$$\leq \| \sum_{i \in I} z_i^* \| \| \sum_{i \in I} v_i \|.$$
Now $\| \sum_{i \in I} z_i^* \| \leq \| \chi_I \|_{p',1} = |I|^{1/p'}.$

$$\begin{split} |\sum_{i \in I} y_i^*(u_i)| &= |(\sum_{i \in I} z_i^*)(\sum_{i \in I} v_i)| \\ &\leq \|\sum_{i \in I} z_i^*\| \|\sum_{i \in I} v_i\|. \\ \text{Now } \|\sum_{i \in I} z_i^*\| &\leq \|\chi_I\|_{p',1} = |I|^{1/p'}. \\ \|j\text{-th column of } \sum_{i \in I} v_i\|_{p,\infty} &\leq j\text{-th term of } (\sum |u_i|^p)^{1/p}. \end{split}$$

$$|\sum_{i \in I} y_i^*(u_i)| = |(\sum_{i \in I} z_i^*)(\sum_{i \in I} v_i)|$$

$$\leq ||\sum_{i \in I} z_i^*|| ||\sum_{i \in I} v_i||.$$

Now
$$\|\sum_{i \in I} z_i^*\| \le \|\chi_I\|_{p',1} = |I|^{1/p'}$$
. $\|j$ -th column of $\sum_{i \in I} v_i\|_{p,\infty} \le j$ -th term of $(\sum |u_i|^p)^{1/p}$

$$\|\sum_{i\in I} v_i\| \le \|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1.$$

$$|\sum_{i \in I} y_i^*(u_i)| = |(\sum_{i \in I} z_i^*)(\sum_{i \in I} v_i)|$$

$$\leq ||\sum_{i \in I} z_i^*|| ||\sum_{i \in I} v_i||.$$

Now
$$\|\sum_{i \in I} z_i^*\| \le \|\chi_I\|_{p',1} = |I|^{1/p'}$$
. $\|j$ -th column of $\sum_{i \in I} v_i\|_{p,\infty} \le j$ -th term of $(\sum |u_i|^p)^{1/p}$

$$\|\sum_{i\in I} v_i\| \le \|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1.$$

Hence
$$|\sum_{i \in I} y_i^*(u_i)| \le |I|^{1/p'}$$
 if $\|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1$.

$$|\sum_{i \in I} y_i^*(u_i)| = |(\sum_{i \in I} z_i^*)(\sum_{i \in I} v_i)|$$

$$\leq ||\sum_{i \in I} z_i^*|| ||\sum_{i \in I} v_i||.$$

Now
$$\|\sum_{i \in I} z_i^*\| \le \|\chi_I\|_{p',1} = |I|^{1/p'}$$
. $\|j$ -th column of $\sum_{i \in I} v_i\|_{p,\infty} \le j$ -th term of $(\sum |u_i|^p)^{1/p}$

$$\|\sum_{i\in I} v_i\| \le \|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1.$$

Hence
$$|\sum_{i\in I} y_i^*(u_i)| \le |I|^{1/p'}$$
 if $\|(\sum_i |u_i|^p)^{1/p}\|_{\infty} \le 1$.
So $\|(\sum_{i\in I} |y_i^*|^{p'})^{1/p'}\|_{(\ell^{\infty})^*} \le |I|^{1/p'}$.

Since z_i^* lives on the *i*-th row, we can regard it as $y_i^* \in (\ell^{\infty})^*$. Suppose that $(u_i) \subseteq \ell^{\infty}$, $\|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1$.

Let $v_i \in X$ be u_i placed on the *i*-th row of X.

Then for any $I \subseteq \mathbb{N}$,

$$|\sum_{i\in I} y_i^*(u_i)| = |(\sum_{i\in I} z_i^*)(\sum_{i\in I} v_i)|$$

\$\leq \|\sum_{i\in I} z_i^* \| \|\sum_{i\in I} v_i \|.\$

Now
$$\|\sum_{i \in I} z_i^*\| \le \|\chi_I\|_{p',1} = |I|^{1/p'}$$
. $\|j$ -th column of $\sum_{i \in I} v_i\|_{p,\infty} \le j$ -th term of $(\sum |u_i|^p)^{1/p}$

Thus

$$\|\sum_{i\in I} v_i\| \le \|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1.$$

Hence
$$|\sum_{i \in I} y_i^*(u_i)| \le |I|^{1/p'}$$
 if $||(\sum_i |u_i|^p)^{1/p}||_{\infty} \le 1$.

So $\|(\sum_{i\in I}|y_i^*|^{p'})^{1/p'}\|_{(\ell^\infty)^*} \preceq |I|^{1/p'}$.

This shows that (y_i^*) is uniformly integrable in the AL-space $(\ell^{\infty})^*$.

Since z_i^* lives on the *i*-th row, we can regard it as $y_i^* \in (\ell^{\infty})^*$. Suppose that $(u_i) \subseteq \ell^{\infty}$, $\|(\sum |u_i|^p)^{1/p}\|_{\infty} < 1$.

Let $v_i \in X$ be u_i placed on the *i*-th row of X.

Then for any $I \subseteq \mathbb{N}$,

$$|\sum_{i\in I} y_i^*(u_i)| = |(\sum_{i\in I} z_i^*)(\sum_{i\in I} v_i)|$$

\$\leq \|\sum_{i\in I} z_i^* \| \|\sum_{i\in I} v_i \|.\$

Now $\|\sum_{i \in I} z_i^*\| \le \|\chi_I\|_{p',1} = |I|^{1/p'}$. $\|j$ -th column of $\sum_{i \in I} v_i\|_{p,\infty} \le j$ -th term of $(\sum |u_i|^p)^{1/p}$

Thus

$$\|\sum_{i\in I} v_i\| \le \|(\sum |u_i|^p)^{1/p}\|_{\infty} \le 1.$$

Hence $|\sum_{i \in I} y_i^*(u_i)| \le |I|^{1/p'}$ if $||(\sum_i |u_i|^p)^{1/p}||_{\infty} \le 1$.

So $\|(\sum_{i\in I} |y_i^*|^{p'})^{1/p'}\|_{(\ell^\infty)^*} \preceq |I|^{1/p'}$.

This shows that (y_i^*) is uniformly integrable in the AL-space $(\ell^{\infty})^*$. Therefore, (y_i^*) is relatively weakly compact.

Recall that $y_i = Te_i \in X$ lives on the *i*-th row.

$$\|\sum a_i z_i\|_{\infty}$$

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i \in S_j} a_i|$$

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_i} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

 ℓ^{∞} has the Dunford-Pettis property

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

 ℓ^{∞} has the Dunford-Pettis property $\implies y_i^*(z_i^*) \to 0$.

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

 ℓ^{∞} has the Dunford-Pettis property $\implies y_i^*(z_i^*) \to 0$.

However, $(y_i^* \sim z_i^*, z_i \sim y_i)$

$$y_i^*(z_i) = z_i^*(y_i) = z_i^*(Te_i) = 1.$$

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

 ℓ^{∞} has the Dunford-Pettis property $\implies y_i^*(z_i^*) \to 0$.

However, $(y_i^* \sim z_i^*, z_i \sim y_i)$

$$y_i^*(z_i) = z_i^*(y_i) = z_i^*(Te_i) = 1.$$

Contradiction!

$$\|\sum a_i z_i\|_{\infty} = \sup_j |\sum_{i\in S_j} a_i| = \|(a_i)\|_{\mathcal{S}}.$$

So (z_i) is equivalent to the unit vector basis of the Schreier space S.

This makes (z_i) weakly null (in ℓ^{∞}).

Recall that (y_i^*) is relatively weakly compact in $(\ell^{\infty})^*$.

 ℓ^{∞} has the Dunford-Pettis property $\implies y_i^*(z_i^*) \to 0$.

However, $(y_i^* \sim z_i^*, z_i \sim y_i)$

$$y_i^*(z_i) = z_i^*(y_i) = z_i^*(Te_i) = 1.$$

Contradiction!

The End

Thank You