
1. Definition of O- and uO-convergence.

Let (xγ)γ∈Γ be a net and x a point in a lattice L.

(i) (xγ)γ∈Γ is said to order converge (O2-converge) to x ∈ L if there exists a directed
set M ⊆ L and a filtered set N ⊆ L satisfying

∨
M =

∧
N = x, and such that for

every (m, n) ∈ M × N, (xγ)γ∈Γ is eventually contained in [m, n]. In this case we

write xγ
O2−→ x.

(ii) (xγ)γ∈Γ is said to unbounded order converge (uO2-converge) to x ∈ L, if

fs,t(xγ)
O2−→ fs,t(x)

for every s ≤ t, where fs,t(x) := (x ∧ t) ∨ s.

2. For lattices there is another definition for order convergence: (xγ)γ∈Γ is said to O1-converge
to x ∈ L if there exists an increasing net (aγ)γ∈Γ and a decreasing net (bγ)γ∈Γ such that
aγ ↑ x, bγ ↓ x and aγ ≤ xγ ≤ bγ (eventually).

Clearly, O1-convergence implies O2-convergence.

3. [ACW, 2023]

Let F ⊆ LL. The net (xγ)γ∈Γ is said to FOi-converge to x in L if ( f (xγ))γ∈Γ is Oi-convergent
to f (x) for every f ∈ F.

Let L be a lattice and F ⊆ LL. Let (xγ)γ∈Γ be a net in L that FO2-converges to
x ∈ L. Then (xγ)γ∈Γ has a subnet that FO1-converges to x. In particular:

• If a net (xγ)γ∈Γ of L is O2-convergent to x ∈ L, then (xγ)γ∈Γ has a subnet
that O1-converges to x.

• If a net (xγ)γ∈Γ of L is uO2-convergent to x ∈ L, then (xγ)γ∈Γ has a subnet
that uO1-converges to x.
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4. The following assertions are easily verified.

(i) If xγ ↑ x in L, then xγ
O−→ x. The dual statement for decreasing nets holds as well.

(ii) If a net O-converges/uO-converges, then the limit is unique.

(iii) If (xγ)γ∈Γ is O-convergent to x, and eventually (xγ)γ∈Γ is contained in a↓, then x ≤ a.
The dual statement holds as well.

(iv) If L is bounded, uO-convergence implies O-convergence.

(v) If the lattice is distributive, the condition s ≤ t in the definition of uO-convergence

becomes redundant: xγ
uO−→ x iff (xγ ∨ s) ∧ t O−→(x ∨ s) ∧ t for every s, t ∈ L.

5. [Papangelou, 1964]

When the lattice is a commutative ℓ-group (in particular, when it is a Riesz space)
the unbounded-order convergence defined above coincides with the established
notion of unbounded convergence on such structures.

6. Let (xγ)γ∈Γ be a net in a lattice L.

(i) If xγ
uO−→ x, and eventually (xγ)γ∈Γ is contained in u↓, then x ≤ u. The dual statement

holds as well.

(ii) If (xγ)γ∈Γ is monotonic, the following implication holds:

xγ
uO−→ x =⇒

{∨
γ xγ = x (if the net is increasing),∧
γ xγ = x (if the net is decreasing).

7. But: The following example illustrates that the converse of (ii) above may fail, even in the
context of distributive lattices. This stands in sharp contrast to the case of Riesz spaces,
where uO-convergence is order continuous.

Example 1 Let L denote the collection of all the closed subsets of R. When endowed with set
inclusion, L forms a bounded distributive lattice. For n ∈ N let Xn := [2−n, ∞) and let X :=

[0, ∞). Then (Xn)n∈N is increasing and
∨L Xn = X, i.e. Xn ↑ X in L. In particular, Xn

O−→ X.
On the other hand, if we let A := (−∞,−1] and B := (−∞, 0], then (Xn ∧ B) ∨ A = A for
every n ∈ N, but (X ∧ B) ∨ A = {0} ∪ A.
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8. Let L be a lattice. We recall that L satisfies the join infinite distributive law (JID) if for each
a ∈ L and S ⊆ L, whenever ∨S exists, so does

∨{a ∧ s : s ∈ S} and a ∧ (
∨

S) =
∨{a ∧ s :

s ∈ S}. Similarly, L satisfies the meet infinite distributive law (MID) if whenever
∧

S exists,
so does

∧{a ∨ s : s ∈ S} and a ∨ (
∧

S) =
∧{a ∨ s : s ∈ S}.

9. [AC 2025]

A distributive lattice L is infinitely distributive if and only if uO-convergence is
order continuous.

10. When L is an infinitely distributive lattice, an eventually order bounded net is uO-convergent
to x iff it O-converges to x. In particular: In a bounded, infinitely distributive lattice, O-
convergence and uO-convergence are the same.

11. For a subset X of a lattice L let

XO
1 := {x ∈ L : there exists a net in X that O-converges to x} ,

XuO
1 := {x ∈ L : there exists a net in X that uO-converges to x} .

For every ordinal number λ > 0 we can define the λ-O-adherence XO
λ, and the λ-uO-

adherence XuO
λ recursively: Set XO

0 := X =: XuO
0 and

XO
λ :=

⋃
β<γ

XO
β

O

1

XuO
λ :=

⋃
β<λ

XuO
β

uO

1

.

12. The set X is said to be O-closed (resp. uO-closed) if X = XO
1 (resp. X = XuO

1 ). The set of
all O-closed subsets of L forms a topology on L, called the order topology. The same can
be said for the uO-closed sets and one can speak of the uO-topology as the topology given
rise by the uO-closed subsets of L. The O-closure of X ⊆ L is the smallest O-closed subset
of L that contains X, i.e. the O-closure is the topological closure w.r.t. the order topology.
Note that this will generally be larger than XO

1 . Similarly, the uO-closure is the smallest
uO-closed subset of L that contains X.
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13. For a lattice L :

(i) The cuts a↑ and a↓ are O-closed and uO-closed.

(ii) If X is a subset of an infinitely distributive lattice L, then XO
1 ⊆ XuO

1 .

(iii) Let

α :=min{λ ≥ 0 : XO
λ = XO

λ+1} ,
β :=min{λ ≥ 0 : XuO

λ = XuO
λ+1} .

Then XO
α coincides with the the O-closure (=topological closure w.r.t. the order topol-

ogy) of X and XuO
β with the uO-closure (= topological closure w.r.t. the uO-topology)

of X. When L is infinitely distributive, we note that XO
α ⊆ XuO

β .

14. [AC 2025]

The O-closure and the uO-closure of a sublattice of an infinitely distributive lattice
L coincide, and the resulting subset is again a sublattice of L.

15. In particular, a sublattice of an infinitely distributive lattice is O-closed iff it is uO-closed.

16. But: The condition of infinite distributivity is essential and cannot be replaced by the
weaker assumption of distributivity.

Example 2 Consider the following subsets of 2R.

C− :={(−∞, a] : a ≤ 0}
C′− :={(−∞, a] : a < 0}
C+ :={[a,+∞) : a ≥ 0}
C′+ :={[a,+∞) : a > 0}

The ring L of subsets of R generated by C− ∪ C+ consists of all subsets of R that have one of the
following types: ∅, (−∞,−a], [b,+∞), (−∞,−a] ∪ [b,+∞), {0}, where a, b ≥ 0. This forms
a distributive lattice. The sub-ring Y generated by C′− ∪ C′+ consists of all subsets of R that have
one of the following types: ∅, (−∞,−a], [b,+∞), (−∞,−a] ∪ [b,+∞), where a, b > 0. Y is a
sublattice of L. The O-closure Y of Y in L consists of the subsets of R that have one of following
types: ∅, (−∞,−a], [b,+∞), (−∞,−a]∪ [b,+∞), where a, b ≥ 0. Observe that the infimum in
Y of (−∞, 0] and [0,+∞) is equal to ∅, whereas the infimum taken in L equals {0}.
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17. [AC 2025]

Let L be an infinitely distributive lattice and A ⊆ L be an ideal. Then AO
1 = AuO

1
and both are uO-closed (and therefore O-closed) ideals.

18. In the above theorem, can ideals be replaced with regular sublattices. (Note that every
ideal of a lattice is, in particular, a regular sublattice.) Given an infinitely distributive
lattice L and a regular sublattice, how many order/ unbounded-order adherences do we
need to take to reach the O-closure of Y?

19. [Gao&Leung 2018]

Let L be an Archimedean Riesz space with the countable sup property and ad-
mitting a separating family of order-continuous positive linear functionals and
let Y be a Riesz subspace of L. Then YO

2 = YuO
1 covers the O-closure of Y.

20. Let P be a poset. For D ⊆ P let D↑ := {x ∈ P : x ≥ d ∀d ∈ D} and D↓ := {x ∈ P : x ≤
d ∀d ∈ D}. If D = D↑↓, then we say that D is a lower-cut (l-cut) of P. The Dedekind-
MacNeille completion of P, denoted by DM(P), is the set of all l-cuts of P, ordered with
set inclusion. DM(P) forms a complete lattice satisfying the following properties.

(a) x↓ ∈ DM(P) for every x ∈ P and the function φ : P → DM(P) : x 7→ x↓ is isotone.

(b) If {Di : i ∈ I} ⊆ DM(P) then

∨
i∈I

DM(P)Di =

(⋃
i∈I

Di

)↑↓

and
∧
i∈I

DM(P)Di =
⋂
i∈I

Di .

(c) φ[P] is join-dense and meet-dense in DM(P), i.e.

a =
∨

DM(P) {φ(x) : x ∈ P, φ(x) ≤ a} ,

and
a =

∧
DM(P) {φ(x) : x ∈ P, φ(x) ≥ a} ,

for every a ∈ DM(P). From this follows that φ preserves all suprema and infima that
exist in P

(d) Let D ⊆ P. Then
D↓ =

∧
DM(P)φ[D] =

∨
DM(P)φ[D↓] ,

and
D↑↓ =

∨
DM(P)φ[D] =

∧
DM(P)φ[D↑] .
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(e) The Dedekind-MacNeille completion of P is characterized – up to order-isomorphism
– as the unique complete lattice containing P as a simultaneously join-dense and
meet-dense sublattice.

21. But: There are distributive lattices that cannot be regularly (lattice) embedded in a com-
plete and distributive (indeed, modular) lattice [Crawley 1961]. In particular, this means
that the Dedekind-MacNeille completion of a distributive lattice need not be distributive.

Example 3 The Dedekind-MacNeille completion of an infinitely distributive lattice need not be
infinitely distributive. When endowed with the pointwise partial order,

L := {(0, b) : 0 ≤ b < 1} ∪ {(1, b) : 0 ≤ b < +∞, b ̸= 1}

forms an infinitely distributive lattice. It is easy to see that

DM(L) = {(0, b) : 0 ≤ b < 1} ∪ {(1, b) : 0 ≤ b ≤ +∞} ,

Lδ = {(0, b) : 0 < b < 1} ∪ {(1, b) : 0 ≤ b < +∞} .

Let us show that Lδ (and hence DM(L)) does not satisfy the Join-Infinite Distributive Law. Let
xn = (0, 1 − 1

n ). Then
∨Lδ xn = (1, 1) and

(∨Lδ xn

)
∧ (1, 1

2) = (1, 1
2). On the other hand,∨Lδ

(xn ∧ (1, 1
2)) = (0, 1

2).

22. If the poset P happens to be an Abelian and Archimedean ℓ-group, it is possible to endow

Pδ := DM(P) \ {∅, P}

with a group structure to obtain a Dedekind complete ℓ-group containing the starting
ℓ-group as a regular ℓ-subgroup [Clifford 1940].

23. The same happens if P is a Boolean lattice: If B is a Boolean lattice, then DM(B) is again
a Boolean lattice [Stone-Glivenko].
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24. [ABC –]

Let Y be a regular sublattice of an infinitely distributive lattice L. Assume that:

• DM(L) is infinitely distributive;

• DM(Y) (lattice) embeds regularly in DM(L).

Then YO
1 = YuO

1 = DM(Y) ∩ L. In particular, YO
1 covers the O-closure of Y.

25. [Gao, Troitsky & Xanthos 2017]

If Y is a regular Riesz subspace of an Archimedean Riesz space L, then Yδ (lattice)
embeds regularly in Lδ.

26. In particular, we observe that:

If Y is a regular Riesz subspace of an Archimedean Riesz space L, then YO
1 is

O-closed.

27. What is the relationship between the Dedekind–MacNeille completion of a sublattice and
that of its containing lattice? A positive result:

Let L be a lattice and Y ⊆ L be a sublattice. Then

i : DM(Y) ∋ A 7→ A↑↓ ∈ DM(L)

is an order-embedding of DM(Y) into DM(L).
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28. Definition:

Let Y be a sublattice of a lattice L.

• Y is said to have Property (A) if for A ⊆ Y, x ∈ A↓ and y ∈ A↓ ∩ Y, there exists
u ∈ A↓ ∩ Y such that u ≥ x ∨ y.

• Y is said to have Property (B) if for A ⊆ Y, x ∈ A↑ and y ∈ A↑ ∩ Y, there exists
u ∈ A↑ ∩ Y satisfying u ≤ x ∧ y.

29. [AC 2025]

Let L be a lattice and Y ⊆ L be a sublattice. Let i : DM(Y) → DM(L) : A 7→ A↑↓

be the order-embedding described above.

• If Y satisfies Property (A), then i preserves arbitrary meets.

• If Y satisfies Property (B), then i preserves arbitrary joins.

30. If Y is a sublattice satisfying Properties (A) and (B), then i[DM(Y)] is a regular sublattice
of DM(L).

31. [AC 2025]

Let L be an infinitely distributive lattice and Y ⊆ L a sublattice satisfying Prop-
erties (A) and (B). Then YO

1 = YuO
1 = DM(Y) ∩ L. In particular, YO

1 covers the
O-closure of Y.
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THANK YOU FOR YOU ATTENTION AND I HOPE TO SEE YOU IN MALTA
FOR THE NEXT POSITIVITY CONFERENCE IN JUNE 2027.
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