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Von Neumann-Maharam problem
Let (X ,A, µ) be a measure space. Its measure algebra is A/ ker µ.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a complete Boolean algebra, characterize when is
there a countably disjointly additive functional µ : A→ [0,+∞] (i.e. a
measure) such that ker µ = {0A} (i.e. strictly positive), and which is
semi-finite (if µ(a) =∞, there is b ≤ a with 0 < µ(b) <∞).

Von Neumann problem for vector lattices: characterization of those
VL’s F which can be order densely embedded into L0 (µ), where µ is a
strictly positive semi-finite measure.

Note that the topology of (local) convergence in measure restricts to an
order continuous Hausdorff topology on F .

Maharam problems are to characterize those VL’s or BA’s which
admit such a topology and to ascertain whether having such a
topology implies embeddability into L0 (µ) or admitting a measure.
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Krein-Kakutani representation of a vector lattice
Everywhere F is an Archimedean vector lattice. Fe is an ideal in F
generated by e ∈ F .

Theorem 1 (Krein-Kakutani Representation theorem)
Fe is isomorphic to a dense (linear) sublattice of C (Ke), for a compact
Hausdorff Ke. We call Ke the Krein-Kakutani spectrum of e.

Note that Ke is the space of unital homomorphisms on (Fe, |e|).
We will call a property of a vector lattice

Local if F has it whenever Fe has it for every e ∈ F+. (Countable)
Dedekind completeness, completeness in σ-order convergence,
relative uniform completeness, countable interpolation property...
Spectral if F has it whenever C (Ke) has it for every e ∈ F+.
(Countable) projection property, countable supremum property,
almost countable completeness, sufficiently many projections...

Every spectral property is local. All given examples of local properties
are not spectral.
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The countable supremum property
Let P be either a Boolean algebra or an Archimedean VL.

P has the countable supremum property (CSP) if for all Q ⊂ P and
q ∈ P with q =

∨
Q there is a countable Q′ ⊂ Q so that q =

∨
Q′, and

the countable chain condition (CCC) if disjoint sets in P are countable.

A net (pα) ⊂ P σ-order converges to p ∈ P (denoted by pα
σo−→ p) if

there is a countable Q ⊂ P with
∧

Q = 0P so that for every q ∈ Q there
is αq such that |pα − p| ≤ q, for α ≥ αq. Clearly, pα

σo−→ p ⇒ pα
o−→ p.

Proposition 1 (TFAE:)
P has the CSP; • o = σo; • (If P is a BA:) P has the CCC;
(If P is an AVL:) Order bounded disjoint sets in P are countable.

C (K ) has the CSP iff it has the CCC iff K has the CCC, i.e. every
disjoint collection of opens subsets of K is countable.

If F is an AVL, then Fcsp := {e ∈ F , Fe has the CSP} is the largest
ideal in F with the CSP. Note that e ∈ Fcsp iff Ke has the CCC.
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L0 over a Boolean algebra
Let A be a complete Boolean algebra with the Stone space KA, which
is extremally disconnected.

Let C∞ (KA) be the set of all f ∈ C (KA, [−∞,+∞]) such that f−1 (±∞)
is nowhere dense. Then f + g is defined pointwise almost everywhere.

Let E be a vector lattice of Borel real-valued functions on KA. Let
N = {f ∈ E , KA\ ker f is meager}, which is an ideal in E .

Proposition 2
L0(A) := C∞ (KA) ' E/N as vector lattices. Moreover, there is a
bijection between L0(A) and the collection of all σ-order continuous
Boolean homomorphisms from {Borel subsets of R} into A.

A has the CCC iff L0 (A) has the CCC iff it has the CSP.

A BA or AVL P is weakly (σ,∞)-distributive if whenever q0 ≥ Qn ↓ 0P ,
then

∧
{p ∈ P, ∀n ∈ N ∃qn ∈ Qn ∩ [0P ,p]} = 0P .

A has this property iff L0 (A) has it.
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Maeda-Ogasawara-Vulikh representation of a VL
Recall that bands in F form a complete Boolean algebra BF .

A sublattice E ⊂ F is order dense if E ∩ (0F , f ] 6= ∅, for every f > 0F .
In this case H 7→ H ∩ E defines an isomorphism from BF onto BE .

Theorem 2 (Maeda-Ogasawara-Vulikh)
L0(BF ) is the largest AVL containing F as an order dense sublattice.

We will call KF := KBF the Maeda-Ogasawara-Vulikh spectrum of F ,
denote F u := L0(BF ) and call it the universal completion on F .

We will call a property is horizontal if F has it whenever F u has it, and
so it only depends on BF , or on KF .

The CCC is horizontal (F has the CCC iff BF has it) but not local.

Projection property is spectral but not horizontal. “Any sequence is
contained in a principal ideal” property is neither horizontal nor local.

Weak (σ,∞)-distributivity is both horizontal and spectral (F has it iff BF
has it iff for any e ∈ F meager sets are nowhere dense in Ke).
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Locally solid topologies
A submeasure is an order preserving ρ : A→ R with ρ (0A) = 0 and
ρ (a ∨ b) ≤ ρ (a) + ρ (b), for any a,b ∈ A (can be replaced either with
ρ (a M b) ≤ ρ (a) + ρ (b) or with disjoint subadditivity).

There is a (neither injective nor surjective) correspondence between
submeasures on A and pseudo-norms on L0(A).

A group topology on A or F is locally solid if it has a base at 0 of solid
sets. It is order continuous (Lebesgue) if pα

o−→ p ⇒ pα −→ p (and T2).

Proposition 3
Locally solid topologies are generated by

For AVL’s, by Riesz pseudo-norms, i.e. subadditive functionals
whose balls are solid.
For BA’s, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the
topology is first countable.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem June 5, 2025 7 / 13



Lebesgue vector lattices and Boolean algebras
We say that A or F is Lebesgue if it admits a Lebesgue topology.

Proposition 4 (TFAE:)
F is Lebesgue; • Fe is Lebesgue, for every e ∈ F;
Fcsp is order dense and Fe is Lebesgue, for every e ∈ Fcsp;
C (Ke) is Lebesgue, for every e ∈ F; • BF is Lebesgue;
F embeds order densely into

∏
i∈I

L0 (Ai , µi), where each µi is a

strictly positive order continuous sub-measure on a complete Ai .

Hence, Lebesgue is both a spectral and horizontal property.

If A or F is Lebesgue then it is weakly (σ,∞)-distributive.

Theorem 3 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
There is at most one Lebesgue topology on A. We denote it τA.

Dedekind complete⇔ τA-complete, and the CCC⇔ τA-metrizable.
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Unbounded order convergence on vector lattices
Let F be an AVL. A net (fα) ⊂ F unbounded order (uo) converges to
f ∈ F (fα

uo−→ f ) if |fα − f | ∧ h o−→ 0F , for all h ≥ 0F .

Theorem 4 (B., Troitsky, 2022)

In C (X ) we have fα
uo−→ O iff for every open U 6= ∅ and ε > 0 there is

an open ∅ 6= V ⊂ U and α0 such that |fα||V ≤ ε, for α ≥ α0.

Similar criterions are also valid in C∞ (X ) and also in Lp (µ) with sets of
positive measure instead of open sets, and also in L0 (A).

Theorem 5 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Lebesgue topology on F iff τ = uπ, where π is arbitrary Lebesgue.

If F is Lebesgue, this topology exists and is unique; denote it by τF . It
is metrizable iff F has the CCC. Topological completion of (F , τF ) is F u.

If F = Lp (µ): τF = local convergence in µ, and uo = a.e. for sequences.
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Topological modification of a convergence
The topological modification tη of a convergence η is the “cotopology”
formed by the η-closed sets.

Theorem 6 (Maharam, 1947)
A is Lebesgue and CCC iff tσo is metrizable. In this case τA = tσo = to
is generated by a strictly positive order continuous submeasure.

Theorem 7 (Deng + de Jeu, 2024 & B., 2025)
If F is Lebesgue with the CSP, then τF = tuo.
(fn)n∈N is τF -null iff each subsequence has a uo-null sub-subsequence.
If F is atomless, the last condition implies CSP (if CH; false if MA+¬CH).

Question 1 (Open since 70s)
Is it always true that if A or F is Lebesgue then τA = to and τF = tuo?

Note that if e ∈ Fcsp, then Fe has the CCC, along with BFe . Then, Fe is
Lebesgue iff BFe is Lebesgue and has CCC.
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Theorem 8 (Balcar, Fremlin, Główczyński, Jech, Pazák, Todorčević)

For a complete Boolean algebra A TFAE:
A is Lebesgue and has CCC;
A has the CCC and to = tσo is Hausdorff; • tσo is regular;
∨ is tσo-continuous at (0A,0A);
A is weakly (σ,∞)-distr. and {0A} is a Gδ set with respect to tσo;
A is weakly (σ,∞)-distr. and A =

⋃
n∈N

An, where An’s do not

contain infinite disjoint sets;
A has the CCC and some stronger version of weak distributivity.

(Complete + CCC + weakly (σ,∞)-distr. ⇒ Maharam) is consistent.

It is also consistent that there is a complete weakly (σ,∞)-distributive
CCC non-Maharam BA with a strictly positive Fatou submeasure.

Question 2
Find a version of Theorem 8 for vector lattices. Remove completeness.
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Total failure
Theorem 9 (Talagrand, 2005)
Maharam does NOT imply existence of a strictly positive measure.

A charge on A is a finitely disjointly additive functional.

Note that a charge is a measure iff it is σ-order continuous. Existence
of a strictly positive charge yields the CCC. Hence, every strictly
positive measure is order continuous.

Theorem 10 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive finite measure on A iff there is a strictly
positive charge on A and A is weakly (σ,∞)-distributive.

Theorem 11 (Kelley, 1959 & Kalton + Roberts, 1983)
A locally solid topology on A is generated by charges iff it is uniformly
exhaustive, i.e. for every neighborhood U of 0A there is n ∈ N such
that there are no disjoint n-tuples in A\U.
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Theorem 12 (Preliminary)
For an Archimedean vector lattice F TFAE:
BF admits a strictly positive semi-finite measure µ;
F embeds order densely into L0 (µ), where µ is as above;
F is Lebesgue and τF is uniformly exhaustive;
F is Lebesgue and τF |[0F ,f ] is locally convex, for every f ≥ 0F ;
Fe admits a locally convex Lebesgue topology, for every e ∈ F;
For all e ∈ F there is a non-zero order continuous functional on Fe;
C (Ke)

δ is a dual space, for every e ∈ F;
F is weakly (σ,∞)-distr. and

⋃
ν∈F∼

+

ker (ν ◦ |·|)d is order dense in F .

This property is both spectral and horizontal.

THANK YOU!
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