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Characterizing Riesz homomorphisms

Theorem (Kim, Andô, 1975)
Let X and Y be Riesz spaces such that Y∼ is separating and let T : X → Y be a
positive linear map. Then T is a Riesz homomorphism if and only if its order
adjoint

T∼ : Y∼ → X∼, g 7→ g ◦ T,

is interval preserving.

• Buskes, van Rooij, and van Haandel have introduced multiple generalizations
of Riesz homomorphisms from Riesz spaces to ordered vector spaces.

• Is a similar characterization true for these notions of Riesz homomorphisms?
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Preliminaries



Order adjoints and interval preserving operators

Let (X, K) and (Y, L) be ordered vector spaces. We denote by

X∼ := {f : X → R; f is linear and order bounded}

the order dual of X. Let T : X → Y be linear and positive.

• The positive linear map

T∼ : Y∼ → X∼, g 7→ g ◦ T

is called the order adjoint of T .
• T is called interval preserving if T[0, x] = [0, Tx] holds for all x ∈ K .
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Pre-Riesz spaces

An ordered vector space (X, K) is called a pre-Riesz space if there exists a Riesz
space Y and a bipositive linear map i : X → Y such that i[X] is order dense in Y , i.e.,

∀y ∈ Y : y = inf {i(x); x ∈ X, i(x) ≥ y} .

The pair (Y, i) is called a vector lattice cover of X.

If i[X] generates Y as a Riesz
space, i.e.,

∀y ∈ Y ∃a1, . . . ,an,b1, . . . ,bm ∈ X : y =
n∨
j=1

i(aj)−
m∨
k=1

i(bk)

then (Y, i) is called the Riesz completion of (X, K). The Riesz completion is unique
up to order isomorphism.
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Typical examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

X Archimedean and directed =⇒ X pre-Riesz =⇒ X directed.

• Directed function spaces, e.g., Cn[0, 1], Pn[0, 1], P[0, 1]
• Lr(X, Y) with X directed and Y Archimedean
• Finite-dimensional spaces with closed cones with non-empty interior
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Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map T : X → Y is called a

• Riesz* homomorphism if

∀∅ 6= F ⊆ X finite : T
[
Fu`

]
⊆ T[F]u`;

• Riesz homomorphism if

∀x1, x2 ∈ X : {Tx1, Tx2}u` = T [{x1, x2}u]` .

T Riesz hom. Y directed, Archimedean=⇒ T Riesz* hom. =⇒ T positive

If X and Y are Riesz spaces, then:

T Riesz hom. ⇐⇒ T Riesz* hom.

and they coincide with the notion of Riesz homomorphisms between Riesz spaces.

5/18



Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map T : X → Y is called a

• Riesz* homomorphism if

∀∅ 6= F ⊆ X finite : T
[
Fu`

]
⊆ T[F]u`;

• Riesz homomorphism if

∀x1, x2 ∈ X : {Tx1, Tx2}u` = T [{x1, x2}u]` .

T Riesz hom. Y directed, Archimedean=⇒ T Riesz* hom. =⇒ T positive

If X and Y are Riesz spaces, then:

T Riesz hom. ⇐⇒ T Riesz* hom.

and they coincide with the notion of Riesz homomorphisms between Riesz spaces.

5/18



Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map T : X → Y is called a

• Riesz* homomorphism if

∀∅ 6= F ⊆ X finite : T
[
Fu`

]
⊆ T[F]u`;

• Riesz homomorphism if

∀x1, x2 ∈ X : {Tx1, Tx2}u` = T [{x1, x2}u]` .

T Riesz hom. Y directed, Archimedean=⇒ T Riesz* hom. =⇒ T positive

If X and Y are Riesz spaces, then:

T Riesz hom. ⇐⇒ T Riesz* hom.

and they coincide with the notion of Riesz homomorphisms between Riesz spaces.

5/18



The van Haandel extension

Theorem (Van Haandel, 1993)
Let X1, X2 be pre-Riesz spaces with respective vector lattice covers (Y1, i1), (Y2, i2),
and let T : X1 → X2 be linear.

1. If there exists a Riesz homomorphism Tρ : Y1 → Y2 with Tρ ◦ i1 = i2 ◦ T, then T
is a Riesz* homomorphism.

2. If (Y1, i1) is the Riesz completion of X1 and T is a Riesz* homomorphism, then
there exists a unique Riesz homomorphism Tρ : Y1 → Y2 with Tρ ◦ i1 = i2 ◦ T.

X1 X2

Y1 Y2.

T

i1 i2
Tρ
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Riesz* homomorphisms
characterized via order adjoints



The lattice-case

Theorem (Kim, Andô, 1975)
Let X and Y be Riesz spaces, T : X → Y linear and positive, and

T∼ : Y∼ → X∼, g 7→ g ◦ T,

its order adjoint.

1. If Y∼ is separating1 and T∼ is interval preserving, then T is a Riesz
homomorphism.

2. If T is a Riesz homomorphism, then T∼ is interval preserving.

1i.e., ∀y ∈ Y : y = 0 ⇐⇒ (∀g ∈ Y∼ : g(y) = 0)
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Operators with interval preserving order adjoints

The proof for the classical result relies on the following result: If X is a Riesz
space and f : X → R is linear and positive, then

∀x ∈ X : f (x+) = max {g(x); g ∈ [0, f ]} .

Observation:
∀x ∈ X : f (x+) = inf f [{0, x}u] .

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) be a directed ordered vector space and f : X → R linear and positive.
Then:

∀x ∈ X : inf f [{0, x}u] = max {g(x); g ∈ [0, f ]} .
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Operators with interval preserving order adjoints

With this new result, one can prove the following:

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) and (Y, L) be directed ordered vector spaces such that L∗ determines
positivity2 and let T : X → Y be linear and positive. If T∼ is interval preserving,
then T is a Riesz homomorphism.

Note: If Y is a Riesz space, then:

Y∼ is separating ⇐⇒ L∗ determines positivity.

2i.e., ∀y ∈ Y : (∀g ∈ L∗ : g(y) ≥ 0) =⇒ y ≥ 0
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Order adjoints of Riesz* homomorphisms

Observation: If (X, K) is a pre-Riesz space and (Xρ, iX) its Riesz completion, then iX
is a Riesz homomorphism.4

=⇒ A natural assumption is that i∼X is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) and (Y, L) be pre-Riesz spaces, (Xρ, iX) the Riesz completion of X, and
let T : X → Y be a Riesz* homomorphism. If i∼X is interval preserving, then T∼ is
interval preserving.

Note: If X is a Riesz space, then:

(Xρ, iX) = (X, idX) =⇒ i∼X = idX∼ =⇒ i∼X is interval preserving.

4iX is even a complete Riesz homomorphism, i.e., inf A = 0⇒ inf iX[A] = 0.

11/18



Order adjoints of Riesz* homomorphisms

Observation: If (X, K) is a pre-Riesz space and (Xρ, iX) its Riesz completion, then iX
is a Riesz homomorphism.4

=⇒ A natural assumption is that i∼X is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) and (Y, L) be pre-Riesz spaces, (Xρ, iX) the Riesz completion of X, and
let T : X → Y be a Riesz* homomorphism. If i∼X is interval preserving, then T∼ is
interval preserving.

Note: If X is a Riesz space, then:

(Xρ, iX) = (X, idX) =⇒ i∼X = idX∼ =⇒ i∼X is interval preserving.

4iX is even a complete Riesz homomorphism, i.e., inf A = 0⇒ inf iX[A] = 0.

11/18



Order adjoints of Riesz* homomorphisms

Observation: If (X, K) is a pre-Riesz space and (Xρ, iX) its Riesz completion, then iX
is a Riesz homomorphism.4

=⇒ A natural assumption is that i∼X is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) and (Y, L) be pre-Riesz spaces, (Xρ, iX) the Riesz completion of X, and
let T : X → Y be a Riesz* homomorphism. If i∼X is interval preserving, then T∼ is
interval preserving.

Note: If X is a Riesz space, then:

(Xρ, iX) = (X, idX) =⇒ i∼X = idX∼ =⇒ i∼X is interval preserving.

4iX is even a complete Riesz homomorphism, i.e., inf A = 0⇒ inf iX[A] = 0.

11/18



Order adjoints of Riesz* homomorphisms

Observation: If (X, K) is a pre-Riesz space and (Xρ, iX) its Riesz completion, then iX
is a Riesz homomorphism.4

=⇒ A natural assumption is that i∼X is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) and (Y, L) be pre-Riesz spaces, (Xρ, iX) the Riesz completion of X, and
let T : X → Y be a Riesz* homomorphism. If i∼X is interval preserving, then T∼ is
interval preserving.

Note: If X is a Riesz space, then:

(Xρ, iX) = (X, idX) =⇒ i∼X = idX∼ =⇒ i∼X is interval preserving.
4iX is even a complete Riesz homomorphism, i.e., inf A = 0⇒ inf iX[A] = 0.

11/18



Summary

If (X, K) and (Y, L) are Riesz spaces:

T Riesz homomorphism T∼ interval preserving
Y∼ separating

If (X, K) and (Y, L) are pre-Riesz spaces and (Xρ, iX) is the Riesz completion of X:

T Riesz homomorphism T∼ interval preserving

T Riesz* homomorphism

L∗ det. pos.

\

i∼X interval preserving
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How strong is the condition that i∼X is
interval preserving?



First counterexample: Namioka space

Consider X = {x ∈ C[0, 5]; 2x(1) = x(0) + x(5)}. Then

T : X → X, x 7→ (t 7→ w(t)x(α(t))) ,

with

w(t) :=


0 if 0 ≤ t ≤ 1,

t − 1 if 1 < t ≤ 3,

5− t if 3 < t ≤ 5

and α(t) :=

 t
3 if 0 ≤ t ≤ 3,

2t − 5 if 3 < t ≤ 5

is a (complete) Riesz homomorphism, but T∼ is not interval preserving.

Idea: ev0 ∈ [0, T∼ev3] and take any x ∈ X with x(0) < 0 and x(t) ≥ 0 for all
t ∈ [1, 5]. Then Tx ≥ 0 and if there is ϕ ∈ [0, ev3] with T∼ϕ = ev0, then
0 ≤ ϕ(Tx) = x(0) < 0  
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First counterexample: A different point of view

Let X be a pre-Riesz space. For all positive linear functionals f : X → R, we have:

f Riesz homomorphism f∼ interval preserving

f Riesz* homomorphism

\

i∼X interval preserving

=⇒ If i∼X is interval preserving, then every Riesz* functional on X is a Riesz
homomorphism.

In the Namioka space X, the linear functional ev1 is a Riesz* homomorphism that
is not a Riesz homomorphism.

=⇒ i∼X : X → Xρ is a (complete) Riesz homomorphism, but i∼X is not interval
preserving.
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Second counterexample: Four-ray cone

Consider the four-ray cone

K = pos
{( 1

0
1

)
,
(−1

0
1

)
,
( 0
1
1

)
,
( 0

−1
1

)}
.

Then
i =

( 1 1 1
1 −1 1
−1 1 1
−1 −1 1

)
: (X, K) → (R4,R4+)

is the embedding (R3, K) into its Riesz completion, thus a (complete) Riesz
homomorphism, but i∼ is not interval preserving.

Idea: Take z := (1, 0, 0, 1)>. For all y ∈ [0, z], we have y2 = y3 = 0, thus
i∼(y) = (y1 − y4, y1 − y4, y1 + y4)>. Then w := (1,−1, 1)> ∈ [0, i∼(z)] but there is no
y ∈ [0, z] with i∼(y) = w.
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Second counterexample: A different point of view

Theorem (B., Kalauch, Stennder, van Gaans, 2025)
Let (X, K) be a pre-Riesz space with Riesz completion (Xρ, iX). If i∼X is interval
preserving, then X∼ has the Riesz decomposition property.

Suppose that dim(X) < ∞ and X is Archimedean. Then:

X∼has the Riesz decomposition property ⇐⇒ X is a Riesz space.

Therefore:
i∼X is interval preserving ⇐⇒ X is a Riesz space.
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Norm-dense subspaces of C(Ω)

Let Ω be a compact Hausdorff space and X ⊆ C(Ω) a norm dense linear subspace.

• X is also order dense in C(Ω), thus a pre-Riesz space with a Riesz completion
(Xρ, iX) satisfying Xρ ⊆ C(Ω) and iX(x) = x for all x ∈ X.

• X is also norm dense in Xρ, thus i′X : (Xρ)′ → X′ is an isomorphism of normed
spaces

• With Kantorovich’s extension theorem, one can show that i′X is also bipositive.
Thus i′X is an order isomorphism.

• Note: X′ = X∼ and (Xρ)′ = (Xρ)∼

=⇒ i∼X = i′X is an order isomorphism, thus interval preserving
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A final question

Let (X, K) be a pre-Riesz space with Riesz completion (Xρ, iX). If i∼X is interval
preserving, then:

• Every Riesz* functional on X is a Riesz homomorphism.
• X∼ has the Riesz decomposition property.

Is the converse also true?
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