Characterizing Riesz* homomorphisms via interval preserving order adjoints

Based on joint work with Anke Kalauch, Janko Stennder, and Onno van Gaans

Florian Boisen
Positivity XII, June 2025

Dresden University of Technology, Germany

Characterizing Riesz homomorphisms

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces such that Y^{\sim} is separating and let $T: X \to Y$ be a positive linear map. Then T is a Riesz homomorphism if and only if its order adjoint

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

is interval preserving.

Characterizing Riesz homomorphisms

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces such that Y^{\sim} is separating and let $T: X \to Y$ be a positive linear map. Then T is a Riesz homomorphism if and only if its order adjoint

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

is interval preserving.

• Buskes, van Rooij, and van Haandel have introduced multiple generalizations of Riesz homomorphisms from Riesz spaces to ordered vector spaces.

Characterizing Riesz homomorphisms

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces such that Y^{\sim} is separating and let $T: X \to Y$ be a positive linear map. Then T is a Riesz homomorphism if and only if its order adjoint

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

is interval preserving.

- Buskes, van Rooij, and van Haandel have introduced multiple generalizations of Riesz homomorphisms from Riesz spaces to ordered vector spaces.
- Is a similar characterization true for these notions of Riesz homomorphisms?

Preliminaries

Order adjoints and interval preserving operators

Let (X, K) and (Y, L) be ordered vector spaces. We denote by

$$X^{\sim} := \{f : X \to \mathbb{R}; f \text{ is linear and order bounded}\}$$

the order dual of X. Let $T: X \to Y$ be linear and positive.

The positive linear map

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T$$

is called the *order adjoint* of *T*.

• T is called interval preserving if T[0,x] = [0,Tx] holds for all $x \in K$.

Pre-Riesz spaces

An ordered vector space (X, K) is called a *pre-Riesz space* if there exists a Riesz space Y and a bipositive linear map $i: X \to Y$ such that i[X] is order dense in Y, i.e.,

$$\forall y \in Y : \quad y = \inf \{i(x); x \in X, i(x) \ge y\}.$$

The pair (Y, i) is called a vector lattice cover of X.

Pre-Riesz spaces

An ordered vector space (X, K) is called a *pre-Riesz space* if there exists a Riesz space Y and a bipositive linear map $i: X \to Y$ such that i[X] is order dense in Y, i.e.,

$$\forall y \in Y : y = \inf \{i(x); x \in X, i(x) \ge y\}.$$

The pair (Y, i) is called a *vector lattice cover* of X. If i[X] generates Y as a Riesz space, i.e.,

$$\forall y \in Y \exists a_1, \dots, a_n, b_1, \dots, b_m \in X : \quad y = \bigvee_{j=1}^n i(a_j) - \bigvee_{k=1}^m i(b_k)$$

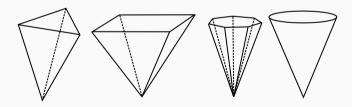
then (Y, i) is called the *Riesz completion* of (X, K). The Riesz completion is unique up to order isomorphism.

Typical examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

X Archimedean and directed $\implies X$ pre-Riesz $\implies X$ directed.

- Directed function spaces, e.g., $C^n[0, 1]$, $P^n[0, 1]$, P[0, 1]
- $L^{r}(X, Y)$ with X directed and Y Archimedean
- Finite-dimensional spaces with closed cones with non-empty interior



Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map $T: X \to Y$ is called a

• Riesz* homomorphism if

$$\forall \varnothing \neq F \subseteq X \text{ finite} : T \left[F^{u\ell} \right] \subseteq T[F]^{u\ell};$$

• Riesz homomorphism if

$$\forall x_1, x_2 \in X : \{Tx_1, Tx_2\}^{\mathrm{u}\ell} = T \left[\{x_1, x_2\}^{\mathrm{u}} \right]^{\ell}.$$

Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map $T: X \to Y$ is called a

• Riesz* homomorphism if

$$\forall \varnothing \neq F \subseteq X \text{ finite} : T\left[F^{\mathrm{u}\ell}\right] \subseteq T[F]^{\mathrm{u}\ell};$$

• Riesz homomorphism if

$$\forall x_1, x_2 \in X : \{Tx_1, Tx_2\}^{\mathrm{u}\ell} = T \left[\{x_1, x_2\}^{\mathrm{u}} \right]^{\ell}.$$

T Riesz hom. $\overset{Y \text{ directed, Archimedean}}{\Longrightarrow} T$ Riesz* hom. $\Longrightarrow T$ positive

Notions of Riesz homomorphisms

Let (X, K) and (Y, L) be ordered vector spaces. A linear map $T: X \to Y$ is called a

• Riesz* homomorphism if

$$\forall \varnothing \neq F \subseteq X \text{ finite} : T \left[F^{u\ell} \right] \subseteq T[F]^{u\ell};$$

• Riesz homomorphism if

$$\forall x_1, x_2 \in X : \{Tx_1, Tx_2\}^{\mathrm{u}\ell} = T \left[\{x_1, x_2\}^{\mathrm{u}} \right]^{\ell}.$$

T Riesz hom. $\stackrel{Y \text{ directed, Archimedean}}{\Longrightarrow} T$ Riesz* hom. $\Longrightarrow T$ positive

If X and Y are Riesz spaces, then:

T Riesz hom. \iff T Riesz* hom.

and they coincide with the notion of Riesz homomorphisms between Riesz spaces.

The van Haandel extension

Theorem (Van Haandel, 1993)

Let X_1, X_2 be pre-Riesz spaces with respective vector lattice covers $(Y_1, i_1), (Y_2, i_2)$, and let $T: X_1 \to X_2$ be linear.

The van Haandel extension

Theorem (Van Haandel, 1993)

Let X_1, X_2 be pre-Riesz spaces with respective vector lattice covers $(Y_1, i_1), (Y_2, i_2)$, and let $T: X_1 \to X_2$ be linear.

1. If there exists a Riesz homomorphism $T^{\rho} \colon Y_1 \to Y_2$ with $T^{\rho} \circ i_1 = i_2 \circ T$, then T is a Riesz* homomorphism.

The van Haandel extension

Theorem (Van Haandel, 1993)

Let X_1, X_2 be pre-Riesz spaces with respective vector lattice covers $(Y_1, i_1), (Y_2, i_2)$, and let $T: X_1 \to X_2$ be linear.

- 1. If there exists a Riesz homomorphism $T^{\rho} \colon Y_1 \to Y_2$ with $T^{\rho} \circ i_1 = i_2 \circ T$, then T is a Riesz* homomorphism.
- 2. If (Y_1, i_1) is the Riesz completion of X_1 and T is a Riesz* homomorphism, then there exists a unique Riesz homomorphism $T^{\rho}: Y_1 \to Y_2$ with $T^{\rho} \circ i_1 = i_2 \circ T$.

Riesz* homomorphisms

characterized via order adjoints

The lattice-case

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces, $T: X \to Y$ linear and positive, and

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

its order adjoint.

- 1. If Y^{\sim} is separating¹ and T^{\sim} is interval preserving, then T is a Riesz homomorphism.
- 2. If T is a Riesz homomorphism, then T^{\sim} is interval preserving.

¹i.e., $\forall y \in Y : y = 0 \iff (\forall g \in Y^{\sim} : g(y) = 0)$

The lattice-case

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces, T: $X \rightarrow Y$ linear and positive, and

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

its order adjoint.

- 1. If Y^{\sim} is separating¹ and T^{\sim} is interval preserving, then T is a Riesz homomorphism.
- 2. If T is a Riesz homomorphism, then T^{\sim} is interval preserving.

¹i.e., $\forall y \in Y : y = 0 \iff (\forall g \in Y^{\sim} : g(y) = 0)$

The proof for the classical result relies on the following result: If X is a Riesz space and $f: X \to \mathbb{R}$ is linear and positive, then

$$\forall x \in X : f(x^+) = \max \{g(x); g \in [0, f]\}.$$

The proof for the classical result relies on the following result: If X is a Riesz space and $f: X \to \mathbb{R}$ is linear and positive, then

$$\forall x \in X : f(x^+) = \max \{g(x); g \in [0, f]\}.$$

Observation:

$$\forall x \in X: \quad f(x^+) = \inf f \left[\{0, x\}^{\mathrm{u}} \right].$$

The proof for the classical result relies on the following result: If X is a Riesz space and $f: X \to \mathbb{R}$ is linear and positive, then

$$\forall x \in X : f(x^+) = \max \{g(x); g \in [0, f]\}.$$

Observation:

$$\forall x \in X: \quad f(x^+) = \inf f \left[\{0, x\}^{\mathrm{u}} \right].$$

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) be a directed ordered vector space and $f: X \to \mathbb{R}$ linear and positive. Then:

$$\forall x \in X : \inf f [\{0, x\}^{\mathrm{u}}] = \max \{g(x); g \in [0, f]\}.$$

With this new result, one can prove the following:

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) and (Y, L) be directed ordered vector spaces such that L^* determines positivity² and let $T: X \to Y$ be linear and positive. If T^{\sim} is interval preserving, then T is a Riesz homomorphism.

²i.e., $\forall y \in Y : (\forall g \in L^* : g(y) \ge 0) \implies y \ge 0$

With this new result, one can prove the following:

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) and (Y, L) be directed ordered vector spaces such that L^* determines positivity² and let $T: X \to Y$ be linear and positive. If T^{\sim} is interval preserving, then T is a Riesz homomorphism.

Note: If Y is a Riesz space, then:

 Y^{\sim} is separating $\iff L^*$ determines positivity.

²i.e., $\forall y \in Y : (\forall g \in L^* : g(y) \ge 0) \implies y \ge 0$

The lattice-case

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces, $T: X \to Y$ linear and positive, and

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

its order adjoint.

- 1. If Y^{\sim} is separating³ and T^{\sim} is interval preserving, then T is a Riesz homomorphism.
- 2. If T is a Riesz homomorphism, then T^{\sim} is interval preserving.

³i.e., $\forall y \in Y : y = 0 \iff (\forall g \in Y^{\sim} : g(y) = 0)$

The lattice-case

Theorem (Kim, Andô, 1975)

Let X and Y be Riesz spaces, T: $X \rightarrow Y$ linear and positive, and

$$T^{\sim}: Y^{\sim} \to X^{\sim}, \quad g \mapsto g \circ T,$$

its order adjoint.

- 1. If Y^{\sim} is separating³ and T^{\sim} is interval preserving, then T is a Riesz homomorphism.
- 2. If T is a Riesz homomorphism, then T^{\sim} is interval preserving.

³i.e., $\forall y \in Y : y = 0 \iff (\forall g \in Y^{\sim} : g(y) = 0)$

Observation: If (X, K) is a pre-Riesz space and (X^{ρ}, i_X) its Riesz completion, then i_X is a Riesz homomorphism.⁴

 $^{^4}i_X$ is even a complete Riesz homomorphism, i.e., $\inf A = 0 \Rightarrow \inf i_X[A] = 0$.

Observation: If (X, K) is a pre-Riesz space and (X^{ρ}, i_X) its Riesz completion, then i_X is a Riesz homomorphism.⁴

 \implies A natural assumption is that i_X^{\sim} is interval preserving.

 $^{^4}i_X$ is even a complete Riesz homomorphism, i.e., $\inf A=0\Rightarrow\inf i_X[A]=0.$

Observation: If (X, K) is a pre-Riesz space and (X^{ρ}, i_X) its Riesz completion, then i_X is a Riesz homomorphism.⁴

 \implies A natural assumption is that i_X^\sim is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X,K) and (Y,L) be pre-Riesz spaces, (X^{ρ},i_X) the Riesz completion of X, and let $T:X\to Y$ be a Riesz* homomorphism. If i_X^{\sim} is interval preserving, then T^{\sim} is interval preserving.

 $^{^4}i_X$ is even a complete Riesz homomorphism, i.e., $\inf A = 0 \Rightarrow \inf i_X[A] = 0$.

Observation: If (X, K) is a pre-Riesz space and (X^{ρ}, i_X) its Riesz completion, then i_X is a Riesz homomorphism.⁴

 \implies A natural assumption is that i_X^\sim is interval preserving.

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X,K) and (Y,L) be pre-Riesz spaces, (X^{ρ},i_X) the Riesz completion of X, and let $T:X\to Y$ be a Riesz* homomorphism. If i_X^{\sim} is interval preserving, then T^{\sim} is interval preserving.

Note: If *X* is a Riesz space, then:

$$(X^{\rho}, i_X) = (X, \mathrm{id}_X) \implies i_X^{\sim} = \mathrm{id}_{X^{\sim}} \implies i_X^{\sim} \text{ is interval preserving.}$$

 $^{^4}i_X$ is even a complete Riesz homomorphism, i.e., $\inf A = 0 \Rightarrow \inf i_X[A] = 0$.

Summary

If (X, K) and (Y, L) are Riesz spaces:

T Riesz homomorphism $\xrightarrow{}$ T^{\sim} interval preserving

Summary

If (X, K) and (Y, L) are Riesz spaces:

$$T$$
 Riesz homomorphism \Longrightarrow T^{\sim} interval preserving

If (X, K) and (Y, L) are pre-Riesz spaces and (X^{ρ}, i_X) is the Riesz completion of X:

interval preserving?

How strong is the condition that i_X^{\sim} is

First counterexample: Namioka space

Consider
$$X = \{x \in C[0,5]; 2x(1) = x(0) + x(5)\}$$
. Then
$$T: X \to X, \quad x \mapsto (t \mapsto w(t)x(\alpha(t))),$$

with

$$w(t) := \begin{cases} 0 & \text{if } 0 \le t \le 1, \\ t - 1 & \text{if } 1 < t \le 3, \text{ and } \alpha(t) := \begin{cases} \frac{t}{3} & \text{if } 0 \le t \le 3, \\ 2t - 5 & \text{if } 3 < t \le 5 \end{cases}$$

is a (complete) Riesz homomorphism, but T^{\sim} is not interval preserving.

First counterexample: Namioka space

Consider
$$X = \{x \in C[0,5]; 2x(1) = x(0) + x(5)\}$$
. Then
$$T: X \to X, \quad x \mapsto (t \mapsto w(t)x(\alpha(t))),$$

with

$$w(t) := \begin{cases} 0 & \text{if } 0 \le t \le 1, \\ t - 1 & \text{if } 1 < t \le 3, \text{ and } \alpha(t) := \begin{cases} \frac{t}{3} & \text{if } 0 \le t \le 3, \\ 5 - t & \text{if } 3 < t \le 5 \end{cases}$$

is a (complete) Riesz homomorphism, but T^{\sim} is not interval preserving.

First counterexample: A different point of view

Let X be a pre-Riesz space. For all positive linear functionals $f: X \to \mathbb{R}$, we have:

 \implies If i_X^\sim is interval preserving, then every Riesz* functional on X is a Riesz homomorphism.

First counterexample: A different point of view

Let X be a pre-Riesz space. For all positive linear functionals $f: X \to \mathbb{R}$, we have:

f Riesz homomorphism f^{\sim} interval preserving f Riesz* homomorphism $f_{\widetilde{\chi}}$ interval preserving

 \implies If i_X^{\sim} is interval preserving, then every Riesz* functional on X is a Riesz homomorphism.

In the Namioka space X, the linear functional ev_1 is a Riesz* homomorphism that is not a Riesz homomorphism.

 $\implies i_X^{\sim}: X \to X^{\rho}$ is a (complete) Riesz homomorphism, but i_X^{\sim} is not interval preserving.

Second counterexample: Four-ray cone

Consider the four-ray cone

$$K = \mathsf{pos}\left\{ \left(\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} -1 \\ 0 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ 1 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ -1 \\ 1 \end{smallmatrix} \right) \right\}.$$

Then

is the embedding (\mathbb{R}^3, K) into its Riesz completion, thus a (complete) Riesz homomorphism, but i^\sim is not interval preserving.

Second counterexample: Four-ray cone

Consider the four-ray cone

$$K = \mathsf{pos}\left\{ \left(\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} -1 \\ 0 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ 1 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ -1 \\ 1 \end{smallmatrix} \right) \right\}.$$

Then

is the embedding (\mathbb{R}^3 , K) into its Riesz completion, thus a (complete) Riesz homomorphism, but i^\sim is not interval preserving.

Idea: Take $z := (1, 0, 0, 1)^{\top}$. For all $y \in [0, z]$, we have $y_2 = y_3 = 0$, thus $i^{\sim}(y) = (y_1 - y_4, y_1 - y_4, y_1 + y_4)^{\top}$. Then $w := (1, -1, 1)^{\top} \in [0, i^{\sim}(z)]$ but there is no $y \in [0, z]$ with $i^{\sim}(y) = w$.

Second counterexample: A different point of view

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) be a pre-Riesz space with Riesz completion (X^{ρ}, i_X) . If i_X^{\sim} is interval preserving, then X^{\sim} has the Riesz decomposition property.

Second counterexample: A different point of view

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) be a pre-Riesz space with Riesz completion (X^{ρ}, i_X) . If i_X^{\sim} is interval preserving, then X^{\sim} has the Riesz decomposition property.

Suppose that $dim(X) < \infty$ and X is Archimedean. Then:

 X^{\sim} has the Riesz decomposition property $\iff X$ is a Riesz space.

Second counterexample: A different point of view

Theorem (B., Kalauch, Stennder, van Gaans, 2025)

Let (X, K) be a pre-Riesz space with Riesz completion (X^{ρ}, i_X) . If i_X^{\sim} is interval preserving, then X^{\sim} has the Riesz decomposition property.

Suppose that $dim(X) < \infty$ and X is Archimedean. Then:

 X^{\sim} has the Riesz decomposition property $\iff X$ is a Riesz space.

Therefore:

 i_X^{\sim} is interval preserving $\iff X$ is a Riesz space.

Let Ω be a compact Hausdorff space and $X \subseteq C(\Omega)$ a norm dense linear subspace.

• X is also order dense in $C(\Omega)$, thus a pre-Riesz space with a Riesz completion (X^{ρ}, i_X) satisfying $X^{\rho} \subseteq C(\Omega)$ and $i_X(x) = x$ for all $x \in X$.

- X is also order dense in $C(\Omega)$, thus a pre-Riesz space with a Riesz completion (X^{ρ}, i_X) satisfying $X^{\rho} \subseteq C(\Omega)$ and $i_X(x) = x$ for all $x \in X$.
- X is also norm dense in X^{ρ} , thus $i'_X: (X^{\rho})' \to X'$ is an isomorphism of normed spaces

- X is also order dense in $C(\Omega)$, thus a pre-Riesz space with a Riesz completion (X^{ρ}, i_X) satisfying $X^{\rho} \subseteq C(\Omega)$ and $i_X(x) = x$ for all $x \in X$.
- X is also norm dense in X^{ρ} , thus $i'_X: (X^{\rho})' \to X'$ is an isomorphism of normed spaces
- With Kantorovich's extension theorem, one can show that i_X' is also bipositive. Thus i_X' is an order isomorphism.

- X is also order dense in $C(\Omega)$, thus a pre-Riesz space with a Riesz completion (X^{ρ}, i_X) satisfying $X^{\rho} \subseteq C(\Omega)$ and $i_X(x) = x$ for all $x \in X$.
- X is also norm dense in X^{ρ} , thus $i'_X: (X^{\rho})' \to X'$ is an isomorphism of normed spaces
- With Kantorovich's extension theorem, one can show that i_X' is also bipositive. Thus i_X' is an order isomorphism.
- Note: $X' = X^{\sim}$ and $(X^{\rho})' = (X^{\rho})^{\sim}$

- X is also order dense in $C(\Omega)$, thus a pre-Riesz space with a Riesz completion (X^{ρ}, i_X) satisfying $X^{\rho} \subseteq C(\Omega)$ and $i_X(x) = x$ for all $x \in X$.
- X is also norm dense in X^{ρ} , thus $i'_X : (X^{\rho})' \to X'$ is an isomorphism of normed spaces
- With Kantorovich's extension theorem, one can show that i_X' is also bipositive. Thus i_X' is an order isomorphism.
- Note: $X' = X^{\sim}$ and $(X^{\rho})' = (X^{\rho})^{\sim}$
- $\implies i_\chi^\sim = i_\chi'$ is an order isomorphism, thus interval preserving

A final question

Let (X, K) be a pre-Riesz space with Riesz completion (X^{ρ}, i_X) . If i_X^{\sim} is interval preserving, then:

- Every Riesz* functional on *X* is a Riesz homomorphism.
- X^{\sim} has the Riesz decomposition property.

A final question

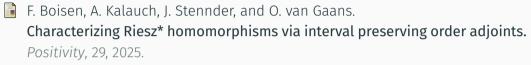
Let (X, K) be a pre-Riesz space with Riesz completion (X^{ρ}, i_X) . If i_X^{\sim} is interval preserving, then:

- Every Riesz* functional on *X* is a Riesz homomorphism.
- X^{\sim} has the Riesz decomposition property.

Is the converse also true?

Thank you!

References i



A. Kalauch and O. van Gaans.

Pre-Riesz spaces.

De Gruyter, 2019.

J. Kim.
The characterization of a lattice homomorphism.

Canadian J. Math., 27:172–175, 1975.

References ii

H.P. Lotz.

Extensions and liftings of positive linear mappings on Banach lattices.

Trans. Amer. Math. Soc., 211:85–100, 1975.

M. van Haandel.

Completions in Riesz space theory.

PhD thesis, University of Nijmegen, 1993.