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been accepted for publication in Indagationes Mathematicae.



What is this talk about?
The space of all regular operators Lr (E ,F ) between Archimedean Riesz
spaces E and F has been extensively studied when the range space F is
order complete. A wealth of results is available concerning the order
structure of Lr (E ,F ) in this context.

Theorem (Ogasawara, 1944)
Let E ,F be Riesz spaces1. If F is order complete, then Loc(E ,F ) is a
band of Lr (E ,F ).

Q1: What happens if we drop the assumption that F is order
complete?Is Loc(E ,F ) still a band of Lr (E ,F )?

Theorem (Onno Van Gaans & Anke Kalauch, 2008)
Loc(ℓ∞0 , ℓ∞0 ) is a band of Lr (ℓ∞0 , ℓ∞0 ).

Theorem (Anthony Wickstead, 2024)
If F is almost Dedekind σ-complete, then Loc(ℓ∞0 ,F ) is a band of
Lr (ℓ∞0 ,F ).

1Throughout this talk, all Riesz spaces are assumed Archimedean.
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Preliminaries
Partially ordered vector spaces

KvG Pre-Riesz Spaces by Anke Kalauch and Onno van Gaans.

Fix a partially ordered vector space (X ,≥), a subspace Y of X , a subset
A of X ,

▶ X is directed if for every x ∈ X , there exists x̃ ∈ X such that
x̃ ≥ x , 0.

▶ A is pervasive in X if for every x ∈ X with x > 0 there exists y ∈ Y
such that 0 < y ≤ x .

▶ Y is said to be majorizing in X if for every x ∈ X there is y ∈ Y
such that y ≥ x .

▶ Y is order dense in X if
x = sup{y ∈ Y | y ≤ x} = inf{y ∈ Y | y ≥ x} for all x ∈ X .

▶ Au = {x ∈ X | x ≥ a for all a ∈ A}.
▶ We write x ⊥ y if {x + y ,−x − y}u = {x − y ,−x + y}u ∀x , y ∈ X .

▶ The disjoint complement Y d of Y in X is the set
Y d = {x ∈ X | x ⊥ y for all y ∈ Y }.

▶ Y is a band of X if Y dd = Y .
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Preliminaries
Regular operators

Let E ,F be Riesz spaces.

▶ Lr (E ,F ) is the space of all regular operators from E to F (i.e.
operators that can be written as a difference of positive linear
operators).

▶ Lb(E ,F ) is the space of all order bounded operators from E to F .

▶ A net (xα)α∈A in X is said to converge in order to x ∈ X , written

xα
o−→ x if there exists another net (bγ)γ∈Λ in X such that bγ ↓ 0

and for any γ ∈ Λ there exists α0 ∈ A such that |xα − x | ≤ bγ for all
α ≥ α0.

▶ For a net (xα)α∈A in X and x ∈ X we write xα
o1−→ x if there exists a

net (yα)α∈A in X such that yα ↓ 0 and |xα − x | ≤ yα for all α ∈ A

▶ We say that a linear operator T : E → F is order continuous if for
any net (xα)α∈A in E such that xα

o−→ 0 we have T (xα)
o−→ 0. We

denote the space of all order-continuous operators between E and F
by Loc(E ,F ).

Throughout this talk, we will view F as a sublattice of its Dedekind
completion F δ and thus Lr (E ,F ) is a subspace of Lr (E ,F δ)
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Pervasiveness as a condition for answering Q1 affirmatively

Theorem
If Lr (E ,F ) is pervasive in Lr (E ,F δ), then Loc(E ,F ) ∩ Lr (E ,F ) is a
band of Lr (E ,F ).

Sketch Proof.
Let S be the Riesz subspace of Lr (E ,F δ) generated by Lr (E ,F ).

▶ We can show Lr (E ,F ) is majorizing in S. Therefore Lr (E ,F ) is
order dense in S (see [KvG]).

▶ By applying Ogasawara’s theorem we have that Loc(E ,F δ) is a band
of Lr (E ,F δ). We can then show that B = S ∩ Loc(E ,F δ) is a band
of S.

▶ By [KvG] we get B ∩ Lr (E ,F ) = Loc(E ,F δ) ∩ Lr (E ,F ) is a band of
Lr (E ,F ).

▶ Finally, since for any net (xα) in F we have xα
o−→ 0 in F iff xα

o−→ 0
in F δ (see [Abramovich & Sirotkin 2005]) we get
Loc(E ,F δ) ∩ Lr (E ,F ) = Loc(E ,F ) ∩ Lr (E ,F ).
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When Lr(E ,F ) is pervasive in Lr(E ,F δ)?

RO(E ,F ) = {f ⊗ v | f ∈ E∼, v ∈ F}

Lemma
If RO(E ,F δ) is pervasive in Lr (E ,F δ), then Lr (E ,F ) is pervasive in
Lr (E ,F δ).

Sketch proof.
Let T ∈ Lr (E ,F δ) with T > 0. Then we may find f ∈ E∼, v ∈ F δ such
that 0 < f ⊗ v ≤ T . In fact we can assume without loss of generality
that f > 0 and v ∈ F δ

+ \ {0}. Now by the pervasiveness of F in F δ we
may choose v0 ∈ F such that 0 < v0 ≤ v and put S = f ⊗ v0, then
clearly S ∈ Lr (E ,F ) and 0 < S ≤ f ⊗ v ≤ T .
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A sufficient condition on the range space F

Proposition
If F is atomic, then Lr (E ,F ) is pervasive in Lr (E ,F δ).

Sketch proof.
Let {ei | i ∈ I} be a complete disjoint system of atoms in F δ and
T ∈ Lr (E ,F δ),T > 0. Then we have

T (x) =
∨
i∈I

λei (T (x))ei , x ∈ E+.

Pick x0 ∈ E+ and j ∈ I such that λej (T (x0)) > 0. Put

T̃ = (λej ◦ T )⊗ ej , then we have T̃ ∈ RO(E ,F δ) and 0 < T̃ ≤ T .
Therefore RO(E ,F δ) is pervasive in Lr (E ,F δ).
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A sufficient condition on the domain space E

Lemma
Let F be an order complete Riesz space. Let {ei | i ∈ I} be a complete
disjoint system of atoms in E , and let λei denote the coordinate
functional of ei . Let T ∈ Lr (E ,F )+, P be the band projection associated
with Loc(E ,F ). Then

∑
i∈α λei (x)⊗ T (ei ) ↑α∈Fin(I ) P(T )(x) for all

x ∈ E+.

Proposition
If E is atomic and the uniform closure of the span of its atoms is equal to
E or has codimension 1, then Lr (E ,F ) is pervasive in Lr (E ,F δ).

Sketch proof.
If T (ej) > 0 for some j ∈ I then put T̃ = λej ⊗ T (ej) ∈ RO(E ,F δ). By

the above Lemma we have 0 < T̃ ≤ P(T ) ≤ T . By using the additional
conditions on E we can deal with the case where T (ei ) = 0 for all
i ∈ I .

Example
If E = ℓ∞0 or E = c , then Lr (E ,F ) is pervasive in Lr (E ,F δ).
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Back to the case Lr(ℓ∞0 ,F )

Theorem
Loc(ℓ∞0 ,F ) is a band of Lr (ℓ∞0 ,F ). (No assumptions on F)

Proof.
By (Abramovich & Wickstead, 1991) we have Lb(ℓ∞0 ,F ) = Lr (ℓ∞0 ,F )
and by (Abramovich & Sirotkin, 2005) we have that every
order-continuous operator is order-bounded. Thus

Loc(ℓ∞0 ,F ) ∩ Lr (ℓ∞0 ,F ) = Loc(ℓ∞0 ,F ) ∩ Lb(ℓ∞0 ,F ) = Loc(ℓ∞0 ,F ).

By the previous results it now follows that Loc(ℓ∞0 ,F ) is a band of
Lr (ℓ∞0 ,F ).
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Lr (ℓ∞0 ,F ).



When Loc(ℓ∞0 ,F ) is directed?

Theorem (Wickstead 2024)
If F is an almost Dedekind complete vector lattice, then Loc(ℓ∞0 ,F ) is
directed.

Example (Loc(ℓ∞0 ,F ) may not be directed)
Let Γ be an uncountable set equipped with the discrete topology, and let
K = Γ ∪ {∞} be the one-point compactification of Γ. We put
F = C (K ), the Banach lattice of continuous real-valued functions on K .
Then Loc(ℓ∞0 ,C (K )) is not directed. The example is based on a
construction (attributed to Fremlin) of a sequence (xn) in C (K ) such

that xn
o−→ 0 but xn ̸ o1−→ 0.
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Loc(E ,F ) may not be a subset of Lr(E ,F ).

Example
Let EK denote the space of all double sequence (xn,m)n,m∈N such that

(i) There exists n0 ∈ N such that xn,m = xñ,m̃ for all n, ñ ≥ n0 and
m, m̃ ∈ N.

(ii) For all n ∈ N we have that (xn,m)m∈N ∈ ℓ∞0 .

We denote by ℓ∞0 (N× N) the space of double sequences which are
constant except on a finite set. Let T : EK → ℓ∞0 (N× N) given by the
formula

(Tx)n,m = xn,2m−1 − xn,2m

In [Abramovich & Wickstead 1991] it is proved that T is an order
bounded operator that is not regular. We can also show that T is order
continuous.



The Riesz-Kantorovich property

We say that Lr (E ,F ) has the Riesz-Kantorovich property whenever for
each T ∈ Lr (E ,F ) such that T+ exists in Lr (E ,F ) we have
T+(x) = sup{T (x) | y ∈ [0, x ]} for each x ∈ E+.

Q2: What happens if we drop the assumption that F is order
complete?Does Loc(E ,F ) has the Riesz-Kantorovich property?

Theorem (Michael Elliott 2019)
There exists a compact Hausdorrf space K such that Lr (L1[0, 1],C (K ))
does not have the Riesz-Kantorovich property.

Theorem (Abramovich & Wickstead 1991)
If E is uniformly complete, then Lr (E , ℓ∞0 ) has the Riesz-Kantorovich
property.
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Pervasiveness (again!) as a condition for answering Q2
affirmatively

Theorem
If Lr (E ,F ) is pervasive in Lr (E ,F δ), then Lr (E ,F ) has the
Riesz-Kantorovich property.

Sketch proof.
Let T ∈ Lr (E ,F ) such that T+. Take S be the sublattice generated by
Lr (E ,F ) in Lr (E ,F δ), then Lr (E ,F ) is order dense in S. By [KvG] it
follows that T+ can be calculated in S, thus T+ is given by the Riesz
Kantorovich formula.

Corollary
Lr (E , ℓ∞0 ) has the Riesz-Kantorovich property. (No assumptions on E).
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Open questions

▶ Is Loc(E ,F ) ∩ Lr (E ,F ) always a band of Lr (E ,F )?

▶ Is Lr (E ,F ) pervasive in Lr (E ,F δ) if E is atomic?



In Memory of C. D. Aliprantis

Let me close with a personal note. Like many of you, I have been deeply
influenced by the work of Professor C.D. Aliprantis. His contributions to
mathematics and economic theory have shaped the way we think, teach,
and write. But beyond the theorems and textbooks, what stays with me
is the profound dedication he brought to his work—a dedication that

spanned decades and left a lasting impact on our field.

Years ago with the encouragement of my advisor Ioannis Polyrakis, I
wrote to Professor C. D. Aliprantis. He replied:

“Thank you very much for your letter. It is always nice to read a letter
like yours. I have spent my whole scientific career on scholar activities.
Each of the books you mention took a minimum of ten years to write
it. Unfortunately, my health has failed me and I can no longer work...
I am very sad about this.”

We remember him with deep gratitude and respect.


