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B(A): the closed unit ball
o k: A— A’ x(x) = x", the canonical embedding. (A closed vector
subspace of A”).
@ Let A be a Banach algebra.
Arens (1951): There exist two natural products on A”, called the first and
the second Arens product such that
e A’ is a Banach algebra with respect the first (.) or the second ()
Arens multiplication.
@ Forall x,y € A xX".y" =x"xy" = (xy)
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f € A is said to be weakly almost periodic (wap) if the orbit Of of f
where , O = {f.x : x € B(A)} is a weakly relatively compact subset in
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Arens regularity

(Grothendieck, Pym) For a Banach algebra A, the following are
equivalents.

Q@ A is Arens regular.
Q@ wap(A) = A
© Forall f € A’ and for every sequences (x,) and (y,) C B(A), we have

lim lim £ (x,ym) = limlim f(xpym)

whenever both limits exist.
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Arens regularity

(Grothendieck, Pym) For a Banach algebra A, the following are
equivalents.

Q@ A is Arens regular.
Q@ wap(A) =A'.
@ Forall f € A’ and for every sequences (x,) and (y,) C B(A), we have

lim lim £ (x,ym) = limlim f(xpym)

whenever both limits exist.

Subalgebra and quotient algebra of an Arens regular algebra are also Arens
regular.
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@ /%, under the convolution product, is not Arens regular.
(Arens 1951).

@ L!(G), for a locally compact group G, is Arens regular if and only if
G is finite.
(Civin and Yood 1961, Young 1973) .

© Let X be a Banach space. The algebra IC(X) is Arens regular if and
only if X reflexive.
(Young 1976)

@ Any C*-Banach algebra is Arens regular.
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Banach lattices

Definition
A real Banach lattice A is a Banach space +vector lattice +

x| < [lyll whenever |x| < |y|.
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Banach lattices

A real Banach lattice A is a Banach space +vector lattice +

x| < [lyll whenever |x| < |y|.

Definition
A Banach lattice E is said to have an order continuous norm if its norm
satisfies the property that for every decreasing net (x,) such that x, | 0
then ||x.|| — O.

| N\

A\

Classical examples of Banach lattices with order continuous norms include
the Lebesgue spaces L£,(jt) (1 < p < o0) spaces.
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Banach lattice with order continuous norm

For a Banach lattice E the following statements are equivalent.

@ E has order continuous norm.

o E is o-Dedekind complete and satisfies: for every sequence (x,) with
xn | 0 we have ||x,|| — 0.

o FEach order interval of E is weakly compact.

e E is an ideal of E".
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Banach lattice with order continuous norm

For a Banach lattice E the following statements are equivalent.

@ E has order continuous norm.

o E is o-Dedekind complete and satisfies: for every sequence (x,) with
xn | 0 we have ||x,|| — 0.

o FEach order interval of E is weakly compact.

e E is an ideal of E".

| \

Theorem

E’ has an order continuous norm<=> Every norm-bounded disjoint
sequence in E is weakly null.

A\
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Banach lattice algebras

Definition

Let A be a Banach lattice, a Banach lattice algebra product on A is a
bilinear mapping p : (x,y) — xy such that (A, p) is a Banach algebra
and

xy >0forall0< x,y € A

[Ixy [ < N[y Il
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Banach lattice algebras

Definition
Let A be a Banach lattice, a Banach lattice algebra product on A is a
bilinear mapping p : (x,y) — xy such that (A, p) is a Banach algebra
and

xy >0forall0< x,y € A

[Ixy [ < N[y Il

A is unital Banach lattice algebra if it has a multiplicative identity e with
lell =1 (e > 0).

C(K), Co(X), LY(G), ¢P (1 < p < 0), L(E) (E Dedekind complete
Banach lattice).

The second dual A" of a Banach lattice algebra, with either Arens
products, is also a Banach lattice algebra.
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o A Banach f-algebra is a Banach lattice algebra such that

fANg=0and0<he A —= hfAg=0=1rhAg.
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e A Banach f-algebra is a Banach lattice algebra such that

fAg=0and0<he A —= hfAg=0=rthAg.

@ An AM-algebra with unit e is a Banach lattice algebra where
|x V y|l = max(||x]| . |ly]|) and e is an order unit.

Goal: Lattice conditions ensuring Arens regularity of Banach lattice
algebras.
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@ If Ais semiprime ( i.e., has no non-zero nilpotent elements). Then L
is injective=> A is embeds into the Arens regular AM-algebra with
unit Z(A)
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o If Ais semiprime ( i.e., has no non-zero nilpotent elements). Then L
is injective=> A is embeds into the Arens regular AM-algebra with
unit Z(A)

o General case.

Let N(A) the ideal of nilpotents elements and B = N(A)+.

e B is semiprime f-algebra
e xy € Bforall x,y € A

For 0 < f € A, and a sequences (x,), (yn) C B(A)

f(XnYm) = f/B(XnYm)

= f € wap(A).
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M-weakly almost periodic

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is
said to be M-weakly almost periodic (M-wap) if ||f.x,|| — 0 for every
disjoint sequence (x,) C B(A).
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Let A be a Banach lattice and . is a product on A. A linear functional f is
said to be M-weakly almost periodic (M-wap) if ||f.x,|| — 0 for every
disjoint sequence (x,) C B(A).<=> The operator T : x — f.x is
M-weakly compact.

M-wap(A) = {M-wap functionals.}
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M-weakly almost periodic

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is
said to be M-weakly almost periodic (M-wap) if ||f.x,|| — 0 for every
disjoint sequence (x,) C B(A).<=> The operator T : x — f.x is
M-weakly compact.

M-wap(A) = {M-wap functionals.}

Motivations:

Q@ M-wap(A) C wap(A) C A

Q@ M-wap(A) = A = A'is Arens regular.

@ For AM-space, M-wap(A) = wap(A) for every compatible product
on A.
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M-weakly almost periodic

@ pointwise product on /. Then M-wap(¢!) = co.
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M-weakly almost periodic

@ pointwise product on ¢*. Then M-wap(¢!) = c.
@ convolution product on ¢*. Then M-wap(¢!) = {0}.

© A is an AM-algebra with unit element e then
M —wap(A) = wap(A) = A’
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Structure of the M-wap space

@ The set M-wap(A) is a closed vector subspace of A’.
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Structure of the M-wap space

@ The set M-wap(A) is a closed vector subspace of A’.

e if0 < f e M-wap(A) then
lr ={g:|g| < Af for some A € R} C M-wap(A).

However, M-wap(A) is not generally a vector sublattice of A’

Define the product on ¢! by

1
5:0,.),

N —

xy=(Y_x)() ya)u where u=(

neN nelN
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Structure of the M-wap space

@ The set M-wap(A) is a closed vector subspace of A’.
e if0 < f e M-wap(A) then
lr ={g:|g| < Af for some A € R} C M-wap(A).

However, M-wap(A) is not generally a vector sublattice of A’

Define the product on ¢! by

xy=(Y_x)() ya)u where u=(

1
.2,0,...).
neN nelN 2

N —

Then f = (1,-1,0,..) € M-wap(A).
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Structure of the M-wap space

@ The set M-wap(A) is a closed vector subspace of A’.

e if0 < f e M-wap(A) then
lr ={g:|g| < Af for some A € R} C M-wap(A).

However, M-wap(A) is not generally a vector sublattice of A’

Example
Define the product on ¢! by

xy=(Y_x)() ya)u where u=(

neN nelN

Then f = (1,-1,0,..) € M-wap(A). But |f| =(1,1,0,..) & M-wap(A)
since |f|.e, = ey, where (e,) the standard unit vectors.

1
5:0,.),

N —
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M-weakly almost periodic
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M-weakly almost periodic

Let A be a Banach lattice algebra and 0 < f € A'. Then the following are
equivalents.

Q f isan M-wap.
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Let A be a Banach lattice algebra and 0 < f € A'. Then the following are
equivalents.

Q f isan M-wap.

@ For every bounded disjoint sequence (x,) C B(A)™ and every
(yn) C B(A)T, lim f(xyy,) =0.
n——-0o0
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M-weakly almost periodic

Let A be a Banach lattice algebra and 0 < f € A'. Then the following are
equivalents.

Q f isan M-wap.
@ For every bounded disjoint sequence (x,) C B(A)™ and every
(yn) C B(A)T, lim f(xyy,) =0.
n——-0o0

| A

Theorem
Let A be a Banach lattice. The following are equivalents.
@ For every product p on A, M-wap(A) = A’.

@ A’ has an order continuous norm.
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M-weakly almost periodic

Let A be a Banach lattice algebra and 0 < f € A'. Then the following are
equivalents.
Q f isan M-wap.

@ For every bounded disjoint sequence (x,) C B(A)™ and every
(yn) C B(A)T, lim f(xyy,) =0.
n——-0o0

Theorem

| A

Let A be a Banach lattice. The following are equivalents.

@ For every product p on A, M-wap(A) = A’.

@ A’ has an order continuous norm.

In particular, if A’ has an order continuous norm, then A is Arens regular
with respect any compatible product.
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M-weakly almost periodic

Sketch: : (1)==(2). Let (x,) be a norm-bounded disjoint sequence.
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M-weakly almost periodic

Sketch: : (1)==(2). Let (x,) be a norm-bounded disjoint sequence.

Choose 0 < ¢ € A" with ||¢|| = 1 and define the Banach
lattice algebra product by x.y = ¢(y)x.

(Carthage Univ) Positivity 2025 Conference 18 / 29



M-weakly almost periodic

Sketch: : (1)==(2). Let (x,) be a norm-bounded disjoint sequence.

Choose 0 < ¢ € A" with ||¢|| = 1 and define the Banach
lattice algebra product by x.y = ¢(y)x. Then
fxn=Ff(xp)@. So ||f.xa|| = |f(xn)] — 0 as

f e M-wap(A).
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M-weakly almost periodic

Sketch: : (1)==(2). Let (x,) be a norm-bounded disjoint sequence.

Choose 0 < ¢ € A" with ||¢|| = 1 and define the Banach
lattice algebra product by x.y = ¢(y)x. Then
fxn=Ff(xp)@. So ||f.xa|| = |f(xn)] — 0 as

f e M-wap(A).

(2)=(1). Use the fact that If A’ has an order continuous
norm then A’ is KB-space.
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M-weakly almost periodic

Sketch: : (1)==(2). Let (x,) be a norm-bounded disjoint sequence.

Choose 0 < ¢ € A" with ||¢|| = 1 and define the Banach
lattice algebra product by x.y = ¢(y)x. Then
fxn=Ff(xp)@. So ||f.xa|| = |f(xn)] — 0 as

f e M-wap(A).

(2)=(1). Use the fact that If A’ has an order continuous
norm then A’ is KB-space.

If A admits a product making it a Banach f-algebra with unit. Then, A
is Arens regular, for every compatible product on A.
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Factorization of linear functionals.

(Carthage Univ) Positivity 2025 Conference 19 /29



Factorization of linear functionals.

Theorem

Let A be a Banach lattice such that A’ has an order continuous norm. Let

p be any Banach lattice algebra product on A. Then for each 0 < f € A/
there exist:

@ A reflexive Banach lattice ¥¢.
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Theorem

Let A be a Banach lattice such that A’ has an order continuous norm. Let

p be any Banach lattice algebra product on A. Then for each 0 < f € A/
there exist:

O A reflexive Banach lattice ¥+.
@ A lattice homomorphism Q : ¥ — A’
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Factorization of linear functionals.

Theorem

Let A be a Banach lattice such that A’ has an order continuous norm. Let

p be any Banach lattice algebra product on A. Then for each 0 < f € A/
there exist:

O A reflexive Banach lattice ¥+.
Q A lattice homomorphism Q : ¥f — A’
@ An M-weakly compact operator S : A — Y such that for all x € A,

fx=S(Q(x)).
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A’
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A'. Wy = SCH(O¥).
For each n € IN, let

Uy = 2"W;+2"B(A) and
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A'. Wy = SCH(O¥).
For each n € IN, let

u, = 2”Wf+2_nB(AI) and
lgll, = inf{t>0:g¢€ tU,} forallge A
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A'. Wy = SCH(O¥).
For each n € IN, let

u, = 2”Wf+2_nB(AI) and
lgll, = inf{t>0:g¢€ tU,} forallge A

ot —{ge (L lel2)} <o)
n=
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A'. Wy = SCH(O¥).
For each n € IN, let

u, = 2”Wf+2_nB(AI) and
lgll, = inf{t>0:g¢€ tU,} forallge A

ot = {geA:(E lel})} <o),

@ J:¥s — A’ the natural injection
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Factorization of linear functionals.

Let A be a Banach lattice algebra and 0 < f € A'. Wy = SCH(O¥).
For each n € IN, let

u, = 2”Wf+2_nB(AI) and
lgll, = inf{t>0:g¢€ tU,} forallge A

ot = {geA:(E lel})} <o),
e J:¥Ys — A’ the natural injection
e S:A— Y S(x) ="fx
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Arens regularity of the positive tensor product of Banach

lattice algebras.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be two Banach lattices.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be two Banach lattices.

Definition (Fremlin)

The positive projective tensor product A®), B is the completion of
the algebraic tensor product A ® B with respect to the norm

ullj| = sup{l|@(u)|| : ¢ € L} forall u € A® B,

where L is the set of all positive bilinear maps from A x B to all Banach
lattices G with norm <1 and 9 : A® B — G is the linear map
corresponding to @.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be two Banach lattices.
Definition (Fremlin)

The positive projective tensor product A®), B is the completion of
the algebraic tensor product A ® B with respect to the norm

ullj| = sup{l|@(u)|| : ¢ € L} forall u € A® B,

where L is the set of all positive bilinear maps from A x B to all Banach
lattices G with norm <1 and 9 : A® B — G is the linear map
corresponding to @.

(Jaber 2020). Let A and B be Banach lattice algebras. On the positive
projective tensor product A®),| B of A and B there exists a natural
algebra structure, under which it becomes a Banach lattice algebra

(a@b).(a' @ b') = (ad’ @ bb').
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lattices G with norm <1 and 9 : A® B — G is the linear map
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of A® B and the Arens
regularity of A and B?
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of A® B and the Arens
regularity of A and B?

If A Qx| B is Arens regular, then so are A and B. \
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of A® B and the Arens
regularity of A and B?

If A Qx| B is Arens regular, then so are A and B.

Theorem

Let A and B be non trivial Banach lattice algebras.
Q If M-wap(A ®|n‘ B) = (A®|, B)' then M-wap(A) = A" and
M-wap(B) =
o /fwap(A ®|7f\ B) (A®|n B)' then wap(A) = A" and

A )
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Idea: For f € A'and g € B' = f ® g € (AR B)" where

(fog)(x®y)="Ff(x)g(y) forall x e Aand y € B.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Idea: For f € A'and g € B' = f ® g € (AR B)" where
(feg)(x®y)="rf(x)g(y) forall x € Aand y € B.

Assume that M-wap(A®| B) = (A®| B)".
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Idea: For f € A'and g € B' = f ® g € (AR B)" where
(feg)(x®y)="rf(x)g(y) forall x € Aand y € B.
Assume that M-wap(A®| B) = (A®| B)' Let

0<feA, let (x))nen C B(A)" be a disjoint sequence
and (y,) C B(A)*. We claim that lim f(x,yn) = 0.
n
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Idea: For f € A'and g € B' = f ® g € (AR B)" where
(feg)(x®y)="rf(x)g(y) forall x € Aand y € B.

Assume that M-wap(A®| B) = (A®| B)' Let

0<feA, let (xn)nen C B(A)T be a disjoint sequence

and (y,) C B(A)". We claim that lim f(x,y,) = 0.Choose
n

b1, by € B such that by, > 0in B and g € B’ with

g(blbz) >0
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Idea: For f € A'and g € B' = f ® g € (AR B)" where
(feg)(x®y)="rf(x)g(y) forall x € Aand y € B.

Assume that M-wap(A®| B) = (A®| B)' Let

0<feA, let (xn)nen C B(A)T be a disjoint sequence

and (y,) C B(A)™. We claim that lim f(x,y,) = 0.Choose
n

b1, by € B such that by, > 0in B and g € B’ with

g(b1bz) > 0 Since f ® g € M-wap(A®), B) then

b

. by
0 = limfRg((n® )V ® =)
n [ b | 62|

= “’r;n f(XnYn)g(ble)'
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Arens regularity of the positive tensor product of Banach

lattice algebras.
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Arens regularity of the positive tensor product of Banach
lattice algebras.

The positive tensor product of two Arens regular Banach lattice algebras
need not be regular.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

The positive tensor product of two Arens regular Banach lattice algebras
need not be regular.

Let A= cg ®R equipped with the multiplication defined by

(f.a).(g,B) = (fg +af + Bg,ap)

the norm and the order on A are given by
|(f,a)|| = ||f]| + |«| and (f,&) > 0 if and only if f > 0 and a > 0,

for all (f,a) € A.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

The positive tensor product of two Arens regular Banach lattice algebras
need not be regular.

Let A= cg ®R equipped with the multiplication defined by

(f.a).(g,B) = (fg +af + Bg,ap)

the norm and the order on A are given by
|(f,a)|| = ||f]| + |«| and (f,&) > 0 if and only if f > 0 and a > 0,

for all (f,a) € A. Ais Arens regular Banach lattice algebra.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

The positive tensor product of two Arens regular Banach lattice algebras
need not be regular.

Let A= cg ®R equipped with the multiplication defined by

(f.a).(g,B) = (fg +af + Bg,ap)

the norm and the order on A are given by

|(f,a)|| = ||f]| + |«| and (f,&) > 0 if and only if f > 0 and a > 0,

for all (f,a) € A. Ais Arens regular Banach lattice algebra.
A ®|n| o is not Arens regular.
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Example
Define ¢ € (A | Co)/ by

p((fa)®g) = Zf k) for all f,g € Cp and & € R.
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Example
Define ¢ € (A | Co)/ by

p((f,a)®g) =

Vn, f, = (1,

Zf

2,..,n0,0,

k) for all f,g € Cp and « € R.

11 1
) € and g, = (ﬁ =ik 5.0,0..) € co.
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Example
Define ¢ € (A | Co)/ by

p((fa)®g) = Zf k) for all f,g € Cp and & € R.
n terms
T1 1
Vn, f, =(1,2,..,n,0,0,..) € ¢g and g, = (ﬁ =ik 5.0,0..) € ¢

Then,

o((f, 1) ®£).(0,1) @ gn) = i

Z‘

Thus,

Iirr;r1linr1ngo((f,,,1)®fn).(0,1)®gm) = 0.

| o o). Q2 = n
(Carthage Univ) Positivity 2025 Conference 26 / 29



Arens regularity of the positive tensor product of Banach
lattice algebras.

Let A and B two Banach lattices such that L" (A, B') has an order
continuous norm then A, B and A® | B are Arens regular .
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Arens regularity of the positive tensor product of Banach
lattice algebras.

Corollary

Let A and B two Banach lattices such that L" (A, B') has an order
continuous norm then A, B and A® | B are Arens regular .

Example

| A

Let A be Banach AM-algebra with unit element e and B a Banach lattice

such that B’ has an order continuous norm. Then A®|n| B is Arens
regular.

.
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Arens regularity of the positive tensor product of Banach

lattice algebras.

Corollary

Let A and B two Banach lattices such that L" (A, B') has an order
continuous norm then A, B and A® | B are Arens regular .

Example

Let A be Banach AM-algebra with unit element e and B a Banach lattice
such that B’ has an order continuous norm. Then A®|n| B is Arens
regular.

| A\

.

(Jaber 2020) The positive projective tensor product of two Banach
f-algebras is a Banach f-algebra

A®|n| B is Arens regular whenever A and B are Banach f-algebras.
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Final remark

Let A and B be two Banach lattice algebras.
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@ A®y B their projective tensor product.
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Final remark

Let A and B be two Banach lattice algebras.

@ A®jy B their projective tensor product.
@ A®)y B their positive projective tensor product.
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Final remark

Let A and B be two Banach lattice algebras.

@ A®jy B their projective tensor product.

® A®|n| B their positive projective tensor product.

@ There exist a unique continuous algebra homomorphism
0:A®r B — AQ)y B that
extend the identity on the algebraic tensor product A® B.
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Final remark

Let A and B be two Banach lattice algebras.

@ A®jy B their projective tensor product.

® A®|n| B their positive projective tensor product.

@ There exist a unique continuous algebra homomorphism
0:AQ®r B — A®|, B that

extend the identity on the algebraic tensor product A® B.
Question: the injectivity of 67
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Final remark

Let A and B be two Banach lattice algebras.

@ A®jy B their projective tensor product.

® A®|n| B their positive projective tensor product.

@ There exist a unique continuous algebra homomorphism
0:AQ®r B — A®|, B that

extend the identity on the algebraic tensor product A® B.
Question: the injectivity of 67

answer is negative, in general.
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Final remark

Let A and B be two Banach lattice algebras.

@ A®jy B their projective tensor product.

® A®|n| B their positive projective tensor product.

@ There exist a unique continuous algebra homomorphism
0:AQ®r B — A®|, B that

extend the identity on the algebraic tensor product A® B.
Question: the injectivity of 67

@ answer is negative, in general.

Example

Consider compact Hausdorff spaces K and K’, each containing a perfect
set (i.e., closed set without isolated points). Take A = C(K) and

B = C(K'). Then the positive projective tensor product A ®),| B is Arens
regular as it is an f-algebra.

(Ljeskovac, M.) The projective tensor product C(K) @, C(K’) is not
Arens regular.
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