Arens Regularity of Banach Lattice Algebras

Jamel Jaber (University of Carthage) joint work with Troudi, M

Positivity 2025 Conference

• Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball

- Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball
- $\kappa: A \longrightarrow A''$, $\kappa(x) = x''$, the canonical embedding. (A closed vector subspace of A'').

- Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball
- $\kappa: A \longrightarrow A''$, $\kappa(x) = x''$, the canonical embedding. (A closed vector subspace of A'').
- Let A be a Banach algebra.

- Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball
- $\kappa: A \longrightarrow A''$, $\kappa(x) = x''$, the canonical embedding. (A closed vector subspace of A'').
- Let A be a Banach algebra.

Arens (1951): There exist two natural products on A'', called the first and the second Arens product such that

- Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball
- $\kappa: A \longrightarrow A''$, $\kappa(x) = x''$, the canonical embedding. (A closed vector subspace of A'').
- Let A be a Banach algebra.

Arens (1951): There exist two natural products on A'', called the first and the second Arens product such that

ullet A'' is a Banach algebra with respect the first (.) or the second (*) Arens multiplication.

- Let A be a Banach space, A' its first dual and A'' the second dual. B(A): the closed unit ball
- $\kappa: A \longrightarrow A''$, $\kappa(x) = x''$, the canonical embedding. (A closed vector subspace of A'').
- Let A be a Banach algebra.

Arens (1951): There exist two natural products on A'', called the first and the second Arens product such that

- A'' is a Banach algebra with respect the first (.) or the second (*) Arens multiplication.
- For all $x, y \in A$, x''.y'' = x''*y'' = (xy)''.

For every $x \in A$, $f \in A'$ and $F, G \in A''$, we define

For every $x \in A$, $f \in A'$ and $F, G \in A''$, we define

$$f.x: y \longrightarrow f(xy)$$
 for all $y \in A$

$$F.f: x \longrightarrow F(f.x)$$
 for all $x \in A$

$$G.F: f \longrightarrow G(F.f)$$
 for all $f \in A'$

For every $x \in A$, $f \in A'$ and $F, G \in A''$, we define

$$f.x: y \longrightarrow f(xy)$$
 for all $y \in A$
 $F.f: x \longrightarrow F(f.x)$ for all $x \in A$
 $G.F: f \longrightarrow G(F.f)$ for all $f \in A'$

$$x*f: y \longrightarrow f(yx)$$
 for all $y \in A$
 $f*F: x \longrightarrow F(x*f)$ for all $x \in A$
 $G*F: f \longrightarrow F(f*G)$ for all $f \in A'$

For every $x \in A$, $f \in A'$ and $F, G \in A''$, we define

$$f.x: y \longrightarrow f(xy)$$
 for all $y \in A$
 $F.f: x \longrightarrow F(f.x)$ for all $x \in A$
 $G.F: f \longrightarrow G(F.f)$ for all $f \in A'$

$$x*f: y \longrightarrow f(yx)$$
 for all $y \in A$
 $f*F: x \longrightarrow F(x*f)$ for all $x \in A$
 $G*F: f \longrightarrow F(f*G)$ for all $f \in A'$

Definition

The Banach algebra A is said to be **Arens regular** if F.G = F*G for all $F.G \in A''$.

(Carthage Univ) Positivity 2025 Conference

For every $x \in A$, $f \in A'$ and $F, G \in A''$, we define

$$f.x: y \longrightarrow f(xy)$$
 for all $y \in A$
 $F.f: x \longrightarrow F(f.x)$ for all $x \in A$
 $G.F: f \longrightarrow G(F.f)$ for all $f \in A'$

$$x*f: y \longrightarrow f(yx)$$
 for all $y \in A$
 $f*F: x \longrightarrow F(x*f)$ for all $x \in A$
 $G*F: f \longrightarrow F(f*G)$ for all $f \in A'$

Definition

The Banach algebra A is said to be **Arens regular** if F.G = F*G for all $F.G \in A''$.

(Carthage Univ) Positivity 2025 Conference

Problem

Characterization of Arens regular Banach algebras?

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$ Let $F, G \in A''$

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$

Let $F, G \in A''$

Goldestein's Theorem $\Longrightarrow (a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in A such that $F=w^*$ -lim a_{α}''

and $G=w^*$ -lim b_{eta}''

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$

Let $F, G \in A''$

Goldestein's Theorem $\Longrightarrow (a_{lpha})_{lpha}$ and $(b_{eta})_{eta}$ in A such that $F=w^*$ -lim a''_{lpha}

and $G=w^*$ -lim b_{eta}''

For all $f \in A'$

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$

Let $F, G \in A''$

Goldestein's Theorem $\Longrightarrow (a_{lpha})_{lpha}$ and $(b_{eta})_{eta}$ in A such that $F=w^*$ -lim a''_{lpha}

and $G=w^*$ -lim b_{eta}''

For all $f \in A'$

$$F.G(f) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha}b_{\beta})$$

Problem

Characterization of Arens regular Banach algebras?

Why, in general, $F.G \neq F*G$ Let $F, G \in A''$

Goldestein's Theorem $\Longrightarrow (a_\alpha)_\alpha$ and $(b_\beta)_\beta$ in A such that $F=w^*$ -lim a''_α and $G=w^*$ -lim b''_β

For all $f \in A'$

$$F.G(f) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha}b_{\beta})$$

$$F*G(f) = \lim_{\beta} \lim_{\alpha} f(a_{\alpha}b_{\beta})$$

Grothendieck's criterion for weak compactness \Longrightarrow

$$\begin{array}{rcl} \lim_{\alpha} \lim_{\beta} f(a_{\alpha}b_{\beta}) & = & \lim_{\beta} \lim_{\alpha} f(a_{\alpha}b_{\beta}) & \Longleftrightarrow \\ & T_f & : & x \longmapsto f.x \text{ is a weakly compact operator} \\ & \text{where } f.x & : & y \longmapsto f(xy). \end{array}$$

Grothendieck's criterion for weak compactness \Longrightarrow

$$\lim_{\alpha} \lim_{\beta} f(a_{\alpha}b_{\beta}) = \lim_{\beta} \lim_{\alpha} f(a_{\alpha}b_{\beta}) \iff$$

$$T_f : x \longmapsto f.x \text{ is a weakly compact operator }$$

$$\text{where } f.x : y \longmapsto f(xy).$$

Definition

 $f \in A'$ is said to be **weakly almost periodic** (wap) if the orbit O_f of f where , $O_f = \{f.x : x \in B(A)\}$ is a weakly relatively compact subset in A'.

5 / 29

(Carthage Univ) Positivity 2025 Conference

Grothendieck's criterion for weak compactness \Longrightarrow

Definition

 $f \in A'$ is said to be **weakly almost periodic** (wap) if the orbit O_f of f where , $O_f = \{f.x : x \in B(A)\}$ is a weakly relatively compact subset in A'.

$$wap(A) = \{ f \in A', f \text{ is a wap} \}$$

◆□ → ◆□ → ◆□ → □ → ○○

5 / 29

(Carthage Univ) Positivity 2025 Conference

Arens regularity

Theorem

(Grothendieck, Pym) For a Banach algebra A, the following are equivalents.

- A is Arens regular.
- wap(A) = A'.
- **3** For all $f \in A'$ and for every sequences (x_n) and $(y_n) \subset B(A)$, we have

$$\lim_{m}\lim_{n}f(x_{n}y_{m})=\lim_{n}\lim_{m}f(x_{n}y_{m})$$

whenever both limits exist.

Arens regularity

Theorem

(Grothendieck, Pym) For a Banach algebra A, the following are equivalents.

- 1 A is Arens regular.
- wap(A) = A'.
- **3** For all $f \in A'$ and for every sequences (x_n) and $(y_n) \subset B(A)$, we have

$$\lim_{m}\lim_{n}f(x_{n}y_{m})=\lim_{n}\lim_{m}f(x_{n}y_{m})$$

whenever both limits exist.

Corollary

Subalgebra and quotient algebra of an Arens regular algebra are also Arens regular.

• ℓ^1 , under the convolution product, is not Arens regular. (Arens 1951).

- ℓ^1 , under the convolution product, is not Arens regular. (Arens 1951).
- L¹(G), for a locally compact group G, is Arens regular if and only if G is finite.
 (Civin and Yood 1961, Young 1973).

7 / 29

- ℓ^1 , under the convolution product, is not Arens regular. (Arens 1951).
- ② $L^1(G)$, for a locally compact group G, is Arens regular if and only if G is finite.

 (Civin and Yood 1961, Young 1973).
- ① Let X be a Banach space. The algebra $\mathcal{K}(X)$ is Arens regular if and only if X reflexive. (Young 1976)

7 / 29

- ℓ^1 , under the convolution product, is not Arens regular. (Arens 1951).
- ② $L^1(G)$, for a locally compact group G, is Arens regular if and only if G is finite.

 (Civin and Yood 1961, Young 1973).
- ① Let X be a Banach space. The algebra $\mathcal{K}(X)$ is Arens regular if and only if X reflexive. (Young 1976)
- ♠ Any C*-Banach algebra is Arens regular.

7 / 29

(Carthage Univ) Positivity 2025 Conference

Banach lattices

Definition

A **real Banach lattice** A is a Banach space +vector lattice +

$$||x|| \le ||y||$$
 whenever $|x| \le |y|$.

Banach lattices

Definition

A **real Banach lattice** A is a Banach space +vector lattice +

$$||x|| \le ||y||$$
 whenever $|x| \le |y|$.

Definition

A Banach lattice E is said to have an order continuous norm if its norm satisfies the property that for every decreasing net (x_{α}) such that $x_{\alpha} \downarrow 0$ then $||x_{\alpha}|| \longrightarrow 0$.

Banach lattices

Definition

A **real Banach lattice** A is a Banach space +vector lattice +

$$||x|| \le ||y||$$
 whenever $|x| \le |y|$.

Definition

A Banach lattice E is said to have an order continuous norm if its norm satisfies the property that for every decreasing net (x_{α}) such that $x_{\alpha} \downarrow 0$ then $||x_{\alpha}|| \longrightarrow 0$.

Classical examples of Banach lattices with order continuous norms include the Lebesgue spaces $\mathcal{L}_p(\mu)$ $(1 \le p < \infty)$ spaces.

(Carthage Univ) Positivity 2025 Conference

Banach lattice with order continuous norm

Theorem

For a Banach lattice E the following statements are equivalent.

- E has order continuous norm.
- E is σ -Dedekind complete and satisfies: for every sequence (x_n) with $x_n \downarrow 0$ we have $||x_n|| \longrightarrow 0$.
- Each order interval of E is weakly compact.
- E is an ideal of E".

Banach lattice with order continuous norm

Theorem

For a Banach lattice E the following statements are equivalent.

- E has order continuous norm.
- E is σ -Dedekind complete and satisfies: for every sequence (x_n) with $x_n \downarrow 0$ we have $||x_n|| \longrightarrow 0$.
- Each order interval of E is weakly compact.
- E is an ideal of E".

Theorem

E' has an order continuous norm \iff Every norm-bounded disjoint sequence in E is weakly null.

Banach lattice algebras

Definition

Let A be a Banach lattice, a **Banach lattice algebra product** on A is a bilinear mapping $p:(x,y)\longrightarrow xy$ such that (A,p) is a Banach algebra and

$$xy \ge 0$$
 for all $0 \le x, y \in A$
 $||xy|| \le ||x|| ||y||$.

Banach lattice algebras

Definition

Let A be a Banach lattice, a **Banach lattice algebra product** on A is a bilinear mapping $p:(x,y)\longrightarrow xy$ such that (A,p) is a Banach algebra and

$$xy \ge 0$$
 for all $0 \le x, y \in A$
 $||xy|| \le ||x|| ||y||$.

A is unital Banach lattice algebra if it has a multiplicative identity e with $\|e\|=1$ (e>0).

Banach lattice algebras

Definition

Let A be a Banach lattice, a **Banach lattice algebra product** on A is a bilinear mapping $p:(x,y)\longrightarrow xy$ such that (A,p) is a Banach algebra and

$$xy \ge 0$$
 for all $0 \le x, y \in A$
 $||xy|| \le ||x|| ||y||$.

A is unital Banach lattice algebra if it has a multiplicative identity e with $\|e\|=1$ (e>0).

C(K), $C_0(X)$, $L^1(G)$, ℓ^p $(1 \le p \le \infty)$, $\mathcal{L}^r(E)$ (E Dedekind complete Banach lattice).

(Carthage Univ)

Banach lattice algebras

Definition

Let A be a Banach lattice, a **Banach lattice algebra product** on A is a bilinear mapping $p:(x,y)\longrightarrow xy$ such that (A,p) is a Banach algebra and

$$xy \ge 0$$
 for all $0 \le x, y \in A$
 $||xy|| \le ||x|| ||y||$.

A is unital Banach lattice algebra if it has a multiplicative identity e with $\|e\|=1$ (e>0).

C(K), $C_0(X)$, $L^1(G)$, ℓ^p $(1 \le p \le \infty)$, $\mathcal{L}^r(E)$ (E Dedekind complete Banach lattice).

Fact

The second dual A'' of a Banach lattice algebra, with either Arens products, is also a Banach lattice algebra.

(Carthage Univ) Positivity 2025 Conference

10 / 29

• A Banach f-algebra is a Banach lattice algebra such that

$$f \wedge g = 0$$
 and $0 \le h \in A \implies hf \wedge g = 0 = fh \wedge g$.

• A Banach f-algebra is a Banach lattice algebra such that

$$f \wedge g = 0$$
 and $0 \le h \in A \implies hf \wedge g = 0 = fh \wedge g$.

• An AM-algebra with unit e is a Banach lattice algebra where $||x \lor y|| = \max(||x||, ||y||)$ and e is an order unit.

(Carthage Univ)

• A Banach f-algebra is a Banach lattice algebra such that

$$f \wedge g = 0$$
 and $0 \le h \in A \implies hf \wedge g = 0 = fh \wedge g$.

• An AM-algebra with unit e is a Banach lattice algebra where $||x \lor y|| = \max(||x||, ||y||)$ and e is an order unit.

(Carthage Univ)

• A Banach f-algebra is a Banach lattice algebra such that

$$f \wedge g = 0$$
 and $0 \le h \in A \implies hf \wedge g = 0 = fh \wedge g$.

• An AM-algebra with unit e is a Banach lattice algebra where $||x \lor y|| = \max(||x||, ||y||)$ and e is an order unit.

Goal: Lattice conditions ensuring Arens regularity of Banach lattice algebras.

11 / 29

(Carthage Univ) Positivity 2025 Conference

Example

Every AM-algebra with unit element e is Arens regular.

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Theorem

Any Banach f-algebra is Arens regular.

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Theorem

Any Banach f-algebra is Arens regular.

Sketch of the proof:

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Theorem

Any Banach f-algebra is Arens regular.

Sketch of the proof: Let A be a Banach f-algebra.

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Theorem

Any Banach f-algebra is Arens regular.

Sketch of the proof: Let A be a Banach f-algebra.

$$L: x \longrightarrow L_x$$
 where $L_x(y) = xy$ for all y

is a lattice and algebra homomorphism from A into

$$Z(A) = \{ T \in \mathcal{L}^r(A) : |T| \le \lambda Id, \text{ for some } \lambda \in \mathbb{R} \}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

12 / 29

(Carthage Univ) Positivity 2025 Conference

Example

Every AM-algebra with unit element e is Arens regular.

Reason: For $0 \le f \in A'$, the orbit $O_f = \{f.x : 0 \le x \in B(A)\} \subseteq [0, f]$ and [0, f] is weakly compact.

Theorem

Any Banach f-algebra is Arens regular.

Sketch of the proof: Let A be a Banach f-algebra.

$$L: x \longrightarrow L_x$$
 where $L_x(y) = xy$ for all y

is a lattice and algebra homomorphism from A into

$$Z(A) = \{ T \in \mathcal{L}^r(A) : |T| \le \lambda Id, \text{ for some } \lambda \in \mathbb{R} \}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

12 / 29

(Carthage Univ) Positivity 2025 Conference

• If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)

• If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case. Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case. Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case. Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.
 - *B* is semiprime *f*-algebra

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case. Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.
 - B is semiprime f-algebra
 - $xy \in B$ for all $x, y \in A$.

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case. Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.
 - B is semiprime f-algebra
 - $xy \in B$ for all $x, y \in A$.

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case.

Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.

- B is semiprime f-algebra
- $xy \in B$ for all $x, y \in A$.

For $0 \le f \in A'$, and a sequences (x_n) , $(y_n) \subset B(A)$

$$f(x_n y_m) = f_{/B}(x_n y_m)$$

13 / 29

(Carthage Univ)

- If A is semiprime (i.e., has no non-zero nilpotent elements). Then L is injective $\Longrightarrow A$ is embeds into the Arens regular AM-algebra with unit Z(A)
- General case.

Let N(A) the ideal of nilpotents elements and $B = N(A)^{\perp}$.

- B is semiprime f-algebra
- $xy \in B$ for all $x, y \in A$.

For $0 \le f \in A'$, and a sequences (x_n) , $(y_n) \subset B(A)$

$$f(x_n y_m) = f_{/B}(x_n y_m)$$

$$\implies f \in wap(A)$$
.

(Carthage Univ)

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$.

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

$$\mathcal{M}$$
-wap $(A) = \{M$ -wap functionals. $\}$

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

$$\mathcal{M}$$
-wap $(A) = \{M$ -wap functionals. $\}$

Motivations:

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

$$\mathcal{M}$$
-wap $(A) = \{M$ -wap functionals. $\}$

Motivations:

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

$$\mathcal{M}$$
-wap(A) = {M-wap functionals.}

Motivations:

- 2 \mathcal{M} -wap $(A) = A' \Longrightarrow A$ is Arens regular.

Definition

Let A be a Banach lattice and . is a product on A. A linear functional f is said to be M-weakly almost periodic (M-wap) if $||f.x_n|| \longrightarrow 0$ for every disjoint sequence $(x_n) \subset B(A)$. \iff The operator $T_f: x \mapsto f.x$ is M-weakly compact.

$$\mathcal{M}$$
-wap $(A) = \{M$ -wap functionals. $\}$

Motivations:

- ② \mathcal{M} -wap $(A) = A' \Longrightarrow A$ is Arens regular.
- **③** For AM-space, \mathcal{M} -wap(A) = wap(A) for every compatible product on A.

Examples

1 pointwise product on ℓ^1 . Then \mathcal{M} -wap $(\ell^1) = c_0$.

Examples

- pointwise product on ℓ^1 . Then \mathcal{M} -wap $(\ell^1) = c_0$.
- **2** convolution product on ℓ^1 . Then \mathcal{M} -wap $(\ell^1) = \{0\}$.

Examples

- **1** pointwise product on ℓ^1 . Then \mathcal{M} -wap $(\ell^1) = c_0$.
- ② convolution product on ℓ^1 . Then \mathcal{M} -wap $(\ell^1) = \{0\}$.
- **3** A is an AM-algebra with unit element e then $\mathcal{M} \text{wap}(A) = \text{wap}(A) = A'$.

Structure of the M-wap space

Theorem

• The set \mathcal{M} -wap(A) is a closed vector subspace of A'.

Structure of the M-wap space

Theorem

• The set \mathcal{M} -wap(A) is a closed vector subspace of A'.

Structure of the M-wap space

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

However,

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

However, \mathcal{M} -wap(A) is not generally a vector sublattice of A'

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

However, \mathcal{M} -wap(A) is not generally a vector sublattice of A'

Example

Define the product on ℓ^1 by

$$x.y = (\sum_{n \in \mathbb{N}} x_n)(\sum_{n \in \mathbb{N}} y_n)u$$
 where $u = (\frac{1}{2}, \frac{1}{2}, 0, ...).$

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

However, \mathcal{M} -wap(A) is not generally a vector sublattice of A'

Example

Define the product on ℓ^1 by

$$x.y = (\sum_{n \in \mathbb{N}} x_n)(\sum_{n \in \mathbb{N}} y_n)u$$
 where $u = (\frac{1}{2}, \frac{1}{2}, 0, ...).$

Then $f = (1, -1, 0, ...) \in \mathcal{M}$ -wap(A).

Theorem

- The set \mathcal{M} -wap(A) is a closed vector subspace of A'.
- if $0 \le f \in \mathcal{M}$ -wap(A) then $I_f = \{g : |g| \le \lambda f \text{ for some } \lambda \in \mathbb{R}\} \subset \mathcal{M}$ -wap(A).

However, \mathcal{M} -wap(A) is not generally a vector sublattice of A'

Example

Define the product on ℓ^1 by

$$x.y = (\sum_{n \in \mathbb{N}} x_n)(\sum_{n \in \mathbb{N}} y_n)u$$
 where $u = (\frac{1}{2}, \frac{1}{2}, 0, ...).$

Then $f = (1, -1, 0, ...) \in \mathcal{M}$ -wap(A). But $|f| = (1, 1, 0, ...) \notin \mathcal{M}$ -wap(A) since $|f| .e_n = e_n$, where (e_n) the standard unit vectors.

(Carthage Univ) Positivity 2025 Conference 16 / 29

4 D > 4 A > 4 B > 4 B > B -

Theorem

Let A be a Banach lattice algebra and $0 \le f \in A'$. Then the following are equivalents.

lacktrian f is an \mathcal{M} -wap.

Theorem

Let A be a Banach lattice algebra and $0 \le f \in A'$. Then the following are equivalents.

- f is an M-wap.
- ② For every bounded disjoint sequence $(x_n) \subset B(A)^+$ and every $(y_n) \subset B(A)^+$, $\lim_{n \to \infty} f(x_n y_n) = 0$.

Theorem

Let A be a Banach lattice algebra and $0 \le f \in A'$. Then the following are equivalents.

- f is an M-wap.
- ② For every bounded disjoint sequence $(x_n) \subset B(A)^+$ and every $(y_n) \subset B(A)^+$, $\lim_{n \to \infty} f(x_n y_n) = 0$.

Theorem

Let A be a Banach lattice algebra and $0 \le f \in A'$. Then the following are equivalents.

- f is an M-wap.
- ② For every bounded disjoint sequence $(x_n) \subset B(A)^+$ and every $(y_n) \subset B(A)^+$, $\lim_{n \to \infty} f(x_n y_n) = 0$.

Theorem

Let A be a Banach lattice. The following are equivalents.

- For every product p on A, \mathcal{M} -wap(A) = A'.
- A' has an order continuous norm.

(Carthage Univ) Positivity 2025 Conference

Theorem

Let A be a Banach lattice algebra and $0 \le f \in A'$. Then the following are equivalents.

- f is an M-wap.
- ② For every bounded disjoint sequence $(x_n) \subset B(A)^+$ and every $(y_n) \subset B(A)^+$, $\lim_{n \to \infty} f(x_n y_n) = 0$.

Theorem

Let A be a Banach lattice. The following are equivalents.

- For every product p on A, \mathcal{M} -wap(A) = A'.
- 2 A' has an order continuous norm.

In particular, if A' has an order continuous norm, then A is Arens regular with respect any compatible product.

(Carthage Univ) Positivity 2025 Conference

Sketch: $(1)\Longrightarrow(2)$. Let (x_n) be a norm-bounded disjoint sequence.

Sketch: (1) \Longrightarrow (2). Let (x_n) be a norm-bounded disjoint sequence. Choose $0 \le \varphi \in A'$ with $\|\varphi\| = 1$ and define the Banach lattice algebra product by $x.y = \varphi(y)x$.

Sketch: $(1)\Longrightarrow(2)$. Let (x_n) be a norm-bounded disjoint sequence. Choose $0\leq \varphi\in A'$ with $\|\varphi\|=1$ and define the Banach lattice algebra product by $x.y=\varphi(y)x$. Then $f.x_n=f(x_n)\varphi$. So $\|f.x_n\|=|f(x_n)|\longrightarrow 0$ as $f\in \mathcal{M}$ -wap(A).

Sketch: $(1) \Longrightarrow (2)$. Let (x_n) be a norm-bounded disjoint sequence.

Choose $0 \le \varphi \in A'$ with $\|\varphi\| = 1$ and define the Banach lattice algebra product by $x.y = \varphi(y)x$. Then $f.x_n = f(x_n)\varphi$. So $\|f.x_n\| = |f(x_n)| \longrightarrow 0$ as $f \in \mathcal{M}$ -wap(A).

 $(2) \Longrightarrow (1)$. Use the fact that If A' has an order continuous norm then A' is KB-space.

Sketch: $(1)\Longrightarrow(2)$. Let (x_n) be a norm-bounded disjoint sequence. Choose $0\leq \varphi\in A'$ with $\|\varphi\|=1$ and define the Banach lattice algebra product by $x.y=\varphi(y)x$. Then $f.x_n=f(x_n)\varphi$. So $\|f.x_n\|=|f(x_n)|\longrightarrow 0$ as $f\in \mathcal{M}$ -wap(A).

 $(2) \Longrightarrow (1)$. Use the fact that If A' has an order continuous norm then A' is KB-space.

Corollary

If A admits a product making it a **Banach** f-algebra with unit. Then, A is Arens regular, for every compatible product on A.

<ロ > < 回 > < 回 > < 直 > くき > しき > しき の < (で)

Theorem

Let A be a Banach lattice such that A' has an order continuous norm. Let p be any Banach lattice algebra product on A. Then for each $0 \le f \in A'$ there exist:

1 A reflexive Banach lattice Ψ_f .

Theorem

Let A be a Banach lattice such that A' has an order continuous norm. Let p be any Banach lattice algebra product on A. Then for each $0 \le f \in A'$ there exist:

- **1** A reflexive Banach lattice Ψ_f .
- **2** A lattice homomorphism $Q: \Psi_f \longrightarrow A'$

Theorem

Let A be a Banach lattice such that A' has an order continuous norm. Let p be any Banach lattice algebra product on A. Then for each $0 \le f \in A'$ there exist:

- **1** A reflexive Banach lattice Ψ_f .
- 2 A lattice homomorphism $Q: \Psi_f \longrightarrow A'$
- **3** An M-weakly compact operator $S:A\longrightarrow \Psi_f$ such that for all $x\in A$,

$$f.x = S(Q(x)).$$

Let A be a Banach lattice algebra and $0 \le f \in A'$

Let A be a Banach lattice algebra and $0 \le f \in A'$. $W_f = SCH(O_f)$. For each $n \in \mathbb{N}$, let

$$U_n = 2^n W_f + 2^{-n} B(A')$$
 and

Let A be a Banach lattice algebra and $0 \le f \in A'$. $W_f = SCH(O_f)$. For each $n \in \mathbb{N}$, let

$$U_n = 2^n W_f + 2^{-n} B(A')$$
 and $\|g\|_n = \inf\{t > 0 : g \in tU_n\}$ for all $g \in A'$.

Let A be a Banach lattice algebra and $0 \le f \in A'$. $W_f = SCH(O_f)$. For each $n \in \mathbb{N}$, let

$$U_n = 2^n W_f + 2^{-n} B(A')$$
 and $\|g\|_n = \inf\{t > 0 : g \in tU_n\}$ for all $g \in A'$.

•
$$\Psi_f = \left\{ g \in A' : \left(\sum_{n=1}^{\infty} \|g\|_n^2 \right)^{\frac{1}{2}} < \infty \right\}.$$

Let A be a Banach lattice algebra and $0 \le f \in A'$. $W_f = SCH(O_f)$. For each $n \in \mathbb{N}$, let

$$U_n = 2^n W_f + 2^{-n} B(A')$$
 and $\|g\|_n = \inf\{t > 0 : g \in tU_n\}$ for all $g \in A'$.

- $\Psi_f = \left\{ g \in A' : (\sum_{n=1}^{\infty} \|g\|_n^2)^{\frac{1}{2}} < \infty \right\}.$
- $J: \Psi_f \longrightarrow A'$ the natural injection

Let A be a Banach lattice algebra and $0 \le f \in A'$. $W_f = SCH(O_f)$. For each $n \in \mathbb{N}$, let

$$U_n = 2^n W_f + 2^{-n} B(A')$$
 and $\|g\|_n = \inf\{t > 0 : g \in tU_n\}$ for all $g \in A'$.

- $\Psi_f = \left\{ g \in A' : (\sum_{n=1}^{\infty} \|g\|_n^2)^{\frac{1}{2}} < \infty \right\}.$
- $J: \Psi_f \longrightarrow A'$ the natural injection
- $S: A \longrightarrow \Psi_f$, S(x) = f.x.

Let A and B be two Banach lattices.

Let A and B be two Banach lattices.

Definition (Fremlin)

The positive projective tensor product $A \otimes_{|\pi|} B$ is the completion of the algebraic tensor product $A \otimes B$ with respect to the norm

$$\|u\|_{|\pi|}=\sup\{\|\widehat{\varphi}(u)\|: \varphi\in\mathcal{L}\}$$
 for all $u\in A\otimes B$,

where L is the set of all positive bilinear maps from $A \times B$ to all Banach lattices G with norm ≤ 1 and $\widehat{\varphi}: A \otimes B \longrightarrow G$ is the linear map corresponding to φ .

Let A and B be two Banach lattices.

Definition (Fremlin)

The positive projective tensor product $A \otimes_{|\pi|} B$ is the completion of the algebraic tensor product $A \otimes B$ with respect to the norm

$$\|u\|_{|\pi|}=\sup\{\|\widehat{arphi}(u)\|:arphi\in\mathcal{L}\}$$
 for all $u\in A\otimes B$,

where L is the set of all positive bilinear maps from $A \times B$ to all Banach lattices G with norm ≤ 1 and $\widehat{\varphi}: A \otimes B \longrightarrow G$ is the linear map corresponding to φ .

(Jaber 2020). Let A and B be Banach lattice algebras. On the positive projective tensor product $A\otimes_{|\pi|}B$ of A and B there exists a natural algebra structure, under which it becomes a Banach lattice algebra

$$(a \otimes b).(a' \otimes b') = (aa' \otimes bb').$$

(Carthage Univ) Positivity 2025 Conference

Let A and B be two Banach lattices.

Definition (Fremlin)

The positive projective tensor product $A \otimes_{|\pi|} B$ is the completion of the algebraic tensor product $A \otimes B$ with respect to the norm

$$\|u\|_{|\pi|}=\sup\{\|\widehat{arphi}(u)\|:arphi\in\mathcal{L}\}$$
 for all $u\in A\otimes B$,

where L is the set of all positive bilinear maps from $A \times B$ to all Banach lattices G with norm ≤ 1 and $\widehat{\varphi}: A \otimes B \longrightarrow G$ is the linear map corresponding to φ .

(Jaber 2020). Let A and B be Banach lattice algebras. On the positive projective tensor product $A\otimes_{|\pi|}B$ of A and B there exists a natural algebra structure, under which it becomes a Banach lattice algebra

$$(a \otimes b).(a' \otimes b') = (aa' \otimes bb').$$

(Carthage Univ) Positivity 2025 Conference

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of $A \otimes_{|\pi|} B$ and the Arens regularity of A and B?

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of $A \otimes_{|\pi|} B$ and the Arens regularity of A and B?

Fact

If $A \otimes_{|\pi|} B$ is Arens regular, then so are A and B.

Let A and B be Banach lattice algebras

Problem

relationship between the Arens regularity of $A \otimes_{|\pi|} B$ and the Arens regularity of A and B?

Fact

If $A \otimes_{|\pi|} B$ is Arens regular, then so are A and B.

Theorem

(Carthage Univ)

Let A and B be non trivial Banach lattice algebras.

- ① If \mathcal{M} -wap $(A \otimes_{|\pi|} B) = (A \otimes_{|\pi|} B)'$ then \mathcal{M} -wap(A) = A' and \mathcal{M} -wap(B) = B'.
- ① If wap $(A \otimes_{|\pi|} B) = (A \otimes_{|\pi|} B)'$ then wap(A) = A' and wap(B) = B'

Idea: For
$$f \in A'$$
 and $g \in B' \Longrightarrow f \otimes g \in (A \otimes_{|\pi|} B)'$ where
$$(f \otimes g)(x \otimes y) = f(x)g(y) \text{ for all } x \in A \text{ and } y \in B.$$

Idea: For
$$f \in A'$$
 and $g \in B' \Longrightarrow f \otimes g \in (A \otimes_{|\pi|} B)'$ where
$$(f \otimes g)(x \otimes y) = f(x)g(y) \text{ for all } x \in A \text{ and } y \in B.$$
 Assume that $\mathcal{M}\text{-}\textit{wap}(A \otimes_{|\pi|} B) = (A \otimes_{|\pi|} B)'.$

Idea: For
$$f \in A'$$
 and $g \in B' \Longrightarrow f \otimes g \in (A \otimes_{|\pi|} B)'$ where
$$(f \otimes g)(x \otimes y) = f(x)g(y) \text{ for all } x \in A \text{ and } y \in B.$$

Assume that \mathcal{M} -wap $(A \otimes_{|\pi|} B) = (A \otimes_{|\pi|} B)'$.Let $0 \leq f \in A'$, let $(x_n)_{n \in \mathbb{N}} \subset B(A)^+$ be a disjoint sequence and $(y_n) \subset B(A)^+$. We claim that $\lim_n f(x_n y_n) = 0$.

Idea: For
$$f \in A'$$
 and $g \in B' \Longrightarrow f \otimes g \in (A \otimes_{|\pi|} B)'$ where
$$(f \otimes g)(x \otimes y) = f(x)g(y) \text{ for all } x \in A \text{ and } y \in B.$$

Assume that $\mathcal{M}\text{-}wap(A\otimes_{|\pi|}B)=(A\otimes_{|\pi|}B)'.$ Let $0\leq f\in A',$ let $(x_n)_{n\in\mathbb{N}}\subset B(A)^+$ be a disjoint sequence and $(y_n)\subset B(A)^+.$ We claim that $\lim_n f(x_ny_n)=0.$ Choose $b_1,b_2\in B$ such that $b_1b_2>0$ in B and $g\in B'$ with $g(b_1b_2)>0$

23 / 29

(Carthage Univ) Positivity 2025 Conference

Idea: For $f \in A'$ and $g \in B' \Longrightarrow f \otimes g \in (A \otimes_{|\pi|} B)'$ where $(f \otimes g)(x \otimes y) = f(x)g(y)$ for all $x \in A$ and $y \in B$.

Assume that $\mathcal{M}\text{-}wap(A \otimes_{|\pi|} B) = (A \otimes_{|\pi|} B)'$. Let $0 \leq f \in A'$, let $(x_n)_{n \in \mathbb{N}} \subset B(A)^+$ be a disjoint sequence and $(y_n) \subset B(A)^+$. We claim that $\lim_n f(x_n y_n) = 0$. Choose $b_1, b_2 \in B$ such that $b_1 b_2 > 0$ in B and $g \in B'$ with $g(b_1 b_2) > 0$ Since $f \otimes g \in \mathcal{M}\text{-}wap(A \otimes_{|\pi|} B)$ then

$$0 = \lim_{n} f \otimes g((x_n \otimes \frac{b_1}{\|b_1\|})(y_n \otimes \frac{b_2}{\|b_2\|})$$
$$= \lim_{n} f(x_n y_n) g(b_1 b_2).$$

(Carthage Univ)

Positivity 2025 Conference 23 / 29

Fact

The positive tensor product of two Arens regular Banach lattice algebras need not be regular.

Fact

The positive tensor product of two Arens regular Banach lattice algebras need not be regular.

Example

Let $A=c_0\oplus \mathbb{R}$ equipped with the multiplication defined by

$$(f, \alpha).(g, \beta) = (fg + \alpha f + \beta g, \alpha \beta)$$

the norm and the order on A are given by

$$\|(f,\alpha)\|=\|f\|+|\alpha|$$
 and $(f,\alpha)\geq 0$ if and only if $f\geq 0$ and $\alpha\geq 0$,

for all $(f, \alpha) \in A$.

Fact

The positive tensor product of two Arens regular Banach lattice algebras need not be regular.

Example

Let $A=c_0\oplus \mathbb{R}$ equipped with the multiplication defined by

$$(f, \alpha).(g, \beta) = (fg + \alpha f + \beta g, \alpha \beta)$$

the norm and the order on A are given by

$$\|(f,\alpha)\|=\|f\|+|\alpha|$$
 and $(f,\alpha)\geq 0$ if and only if $f\geq 0$ and $\alpha\geq 0$,

for all $(f, \alpha) \in A$. A is Arens regular Banach lattice algebra.

(Carthage Univ) Positivity 2025 Conference

Fact

The positive tensor product of two Arens regular Banach lattice algebras need not be regular.

Example

Let $A=c_0\oplus \mathbb{R}$ equipped with the multiplication defined by

$$(f, \alpha).(g, \beta) = (fg + \alpha f + \beta g, \alpha \beta)$$

the norm and the order on A are given by

$$\|(f,\alpha)\| = \|f\| + |\alpha|$$
 and $(f,\alpha) \ge 0$ if and only if $f \ge 0$ and $\alpha \ge 0$,

for all $(f, \alpha) \in A$. A is Arens regular Banach lattice algebra. $A \otimes_{|\pi|} c_0$ is not Arens regular.

(Carthage Univ) Positivity 2025 Conference

Example

Define $\varphi \in (A \otimes_{|\pi|} c_0)'$ by

$$arphi((f,lpha)\otimes g)=\sum_{k=1}^\infty f(k)g(k) ext{ for all } f,g\in \mathit{C}_0 ext{ and } lpha\in \mathbb{R}.$$

(Carthage Univ) Positivity 2025 Conference

Example

Define $\varphi \in (A \otimes_{|\pi|} c_0)'$ by

$$arphi((f,lpha)\otimes g)=\sum_{k=1}^\infty f(k)g(k) ext{ for all } f,g\in \mathit{C}_0 ext{ and } lpha\in \mathbb{R}.$$

$$\forall n, f_n = (1, 2, ..., n, 0, 0, ...) \in c_0 \text{ and } g_n = (\underbrace{\frac{1}{n^2}, \frac{1}{n^2}, ... \frac{1}{n^2}}_{n}, 0, 0...) \in c_0.$$

(Carthage Univ) Positivity 2025 Conference

Example

Define $\varphi \in (A \otimes_{|\pi|} c_0)'$ by

$$\varphi((f,\alpha)\otimes g)=\sum_{k=1}^\infty f(k)g(k) \text{ for all } f,g\in C_0 \text{ and } \alpha\in\mathbb{R}.$$

$$\forall \textit{n, } \textit{f}_\textit{n} = (1, 2, ..., \textit{n}, 0, 0, ..) \in \textit{c}_0 \text{ and } \textit{g}_\textit{n} = (\overbrace{\frac{1}{\textit{n}^2}, \frac{1}{\textit{n}^2}, ... \frac{1}{\textit{n}^2}}, 0, 0..) \in \textit{c}_0.$$

Then,

$$\varphi((f_n, 1) \otimes f_n).(0, 1) \otimes g_m) = \sum_{k=1}^n \frac{1}{k} g_m(k) = \begin{cases} \frac{(m+1)}{2m} & \text{if } n \ge m \\ \frac{n(n+1)}{2m^2} & \text{if } n < m \end{cases}$$

Thus,

$$\lim_{n} \lim_{m} \varphi((f_{n}, 1) \otimes f_{n}).(0, 1) \otimes g_{m}) = 0.$$

$$\lim_{n} \lim_{m} \varphi((f_{n}, 1) \otimes f_{n}).(0, 1) \otimes g_{m}) = \frac{1}{2}.$$

(Carthage Univ) Positivity 2025 Conference

Corollary

Let A and B two Banach lattices such that $\mathcal{L}^r(A, B')$ has an order continuous norm then A, B and $A \otimes_{|\pi|} B$ are Arens regular .

Corollary

Let A and B two Banach lattices such that $\mathcal{L}^r(A, B')$ has an order continuous norm then A, B and $A \otimes_{|\pi|} B$ are Arens regular .

Example

Let A be Banach AM-algebra with unit element e and B a Banach lattice such that B' has an order continuous norm. Then $A\otimes_{|\pi|}B$ is Arens regular.

Corollary

Let A and B two Banach lattices such that $\mathcal{L}^r(A, B')$ has an order continuous norm then A, B and $A \otimes_{|\pi|} B$ are Arens regular .

Example

Let A be Banach AM-algebra with unit element e and B a Banach lattice such that B' has an order continuous norm. Then $A\otimes_{|\pi|}B$ is Arens regular.

(Jaber 2020) The positive projective tensor product of two Banach f-algebras is a Banach f-algebra

Example

 $A \otimes_{|\pi|} B$ is Arens regular whenever A and B are Banach f-algebras.

(Carthage Univ) Positivity 2025 Conference

Let A and B be two Banach lattice algebras.

• $A \otimes_{\pi} B$ their projective tensor product.

- $A \otimes_{\pi} B$ their projective tensor product.
- ullet $A \otimes_{|\pi|} B$ their positive projective tensor product.

- $A \otimes_{\pi} B$ their projective tensor product.
- $A \otimes_{|\pi|} B$ their positive projective tensor product.
- There exist a unique continuous algebra homomorphism $\theta: A \otimes_{\pi} B \longrightarrow A \otimes_{|\pi|} B$ that extend the identity on the algebraic tensor product $A \otimes B$.

- $A \otimes_{\pi} B$ their projective tensor product.
- $A \otimes_{|\pi|} B$ their positive projective tensor product.
- There exist a unique continuous algebra homomorphism $\theta:A\otimes_{\pi}B\longrightarrow A\otimes_{|\pi|}B$ that extend the identity on the algebraic tensor product $A\otimes B$.
- Question: the injectivity of θ ?

- $A \otimes_{\pi} B$ their projective tensor product.
- $A \otimes_{|\pi|} B$ their positive projective tensor product.
- There exist a unique continuous algebra homomorphism $\theta:A\otimes_{\pi}B\longrightarrow A\otimes_{|\pi|}B$ that extend the identity on the algebraic tensor product $A\otimes B$.
- Question: the injectivity of θ ?
- answer is negative, in general.

- $A \otimes_{\pi} B$ their projective tensor product.
- $A \otimes_{|\pi|} B$ their positive projective tensor product.
- There exist a unique continuous algebra homomorphism $\theta:A\otimes_{\pi}B\longrightarrow A\otimes_{|\pi|}B$ that extend the identity on the algebraic tensor product $A\otimes B$.
- Question: the injectivity of θ ?
- answer is negative, in general.

Let A and B be two Banach lattice algebras.

- $A \otimes_{\pi} B$ their projective tensor product.
- $A \otimes_{|\pi|} B$ their positive projective tensor product.
- There exist a unique continuous algebra homomorphism $\theta:A\otimes_{\pi}B\longrightarrow A\otimes_{|\pi|}B$ that extend the identity on the algebraic tensor product $A\otimes B$.
- Question: the injectivity of θ ?
- answer is negative, in general.

Example

Consider compact Hausdorff spaces K and K', each containing a perfect set (i.e., closed set without isolated points). Take A = C(K) and B = C(K'). Then the positive projective tensor product $A \otimes_{|\pi|} B$ is Arens regular as it is an f-algebra.

(Ljeskovac, M.) The projective tensor product $C(K) \otimes_{\pi} C(K')$ is not Arens regular.

(Carthage Univ) Positivity 2025 Conference

- Arens, R.: The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 939-948.
- Grothendieck, A.: Critères de compacticite dans les espaces fonctionels généraux, Amer. J.Math. 74 (1952), 168–186.
- Pym,J. S.: The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), 84–104.
- Wickstead, A. W.: Banach lattice algebras: some questions, but very few answers. Positivity 21 (2017), no. 2, 803–815.