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An old result

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K̃ so that C(K)∗∗ is isometrically lattice (and ring) isomorphic to C(K̃).

Kakutani 1: C(K) is an AM-space ⇒ C(K)∗ is an AL-space.

Kakutani 2: C(K)∗ is an AL-space ⇒ C(K)∗∗ is a unital AM-space.

Kakutani 3: C(K)∗∗ is a unital AM-space ⇒ C(K)∗∗ ≅ C(K̃) for some compact
Hausdroff K̃

Definition

Let K be a compact Hausdorff space. We call K̃ the hyper-Stonean cover of K.
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Question

Can we replace compact K with realcompact X , and the norm (bi)dual
with the order (bi)dual?

Realcompact space: A Tychonoff space which is a closed subspace of some power of R.

For every topological space X there is a unique realcompact κX so that C(X) &
C(κX) are (ring and lattice) isomorphic.
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Preliminaries

Direct & Inverse Limits
The space C(X)∼∼

The space X̃

Order Adjoints

Theorem

T ∶ E→ F a positive operator; T∼ ∶ F∼ → E∼ its order adjoint, φ↦ φ ○T.

(i) T∼ is positive and order continuous.

(ii) T order continuous ⇒ T∼[F∼oc ] ⊆ E∼oc .

(iii) T interval preserving ⇒ T∼ a lattice homomorphism.

(iv) T a lattice homomorphism ⇒ T∼ interval preserving.

(v) T∼ lattice homomorphism ⇒ T interval preserving if ○F∼ = {0}.
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Categories of Vector Lattices

Objects Morphisms
VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL Vector lattices Normal, interval preserving lattice homomorphisms
TOP Topological spaces Continuous functions
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The space C(X)∼∼
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Definitions

Definition

Let C be a category, I a directed set, Eα a vector lattice for each α ∈ I , and
eα,β ∶ Eα → Eβ a C-morphism for all α ≼ β in I .

D ∶= ((Eα)α∈I , (eα,β)α≼β) is a direct system in C if, for all α ≼ β ≼ γ in I ,

eβ,γ ○ eα,β = eα,γ .

S ∶= (E, (eα)α∈I ) is a compatible system of D in C if, for all α ≼ β in I ,

eβ ○ eα,β = eα.
The compatible system S ∶= (E, (eα)α∈I ) of D in C is the direct limit of D if for
any compatible system S̃ ∶= (Ẽ, (ẽα)α∈I ) of D in C there exists a unique
C-morphism r ∶ E→ Ẽ so that, for every α ∈ I ,

r ○ eα = ẽα.

E = limÐ→Eα

Eα Eγ

Eβ

eα,β

eα,γ

eβ,γ

Eα E

Eβ

eα,β

eα

eβ

E Ẽ

Eα

r

eα ẽα
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Example

Example (de Jeu & vdWalt, 2024)

X a realcompact space
– KX all nonempty compact subsets of X , ordered by inclusion;
– C = {Kα}α∈I cofinal in KX .

Kα ⊆ Kβ : Tα,β ∶M(Kα) →M(Kβ) Tα,β(µ)(B) = µ(B ∩Kα)

Kα ∈ C: Tα ∶M(Kα) →Mc(X) Tα(µ)(B) = µ(B ∩Kα)

DC ∶= ((M(Kα))α∈I , (Tα,β)α≼β) is an inverse system in NIVL

limÐ→M(Kα) =Mc(X) in NIVL.

Equivalently: Identify M(Kα) with the band {µ ∈Mc(X) ∶ Sµ ⊆ Kα} in Mc(X) &
Tα,β , Tα with inclusions. Still, limÐ→M(Kα) =Mc(X) = C(X)∼.
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Definitions

Definition

Let C be a category, I a directed set, Eα a vector lattice for each α ∈ I , and
pβ,α ∶ Eβ → Eα a C-morphism for all β ≽ α in I .

I ∶= ((Eα)α∈I , (pβ,α)β≽α) is an inverse system in C if, for all α ≼ β ≼ γ in I ,

pβ,α ○ pγ,β = pγ,α.
S ∶= (E, (pα)α∈I ) is a compatible system of I in C if, for all α ≼ β in I ,

pβ,α ○ pβ = pα.
The compatible system S ∶= (E, (pα)α∈I ) of I in C is the inverse limit of I if for
any compatible system S̃ ∶= (Ẽ, (p̃α)α∈I ) of I in C there exists a unique
C-morphism s ∶ Ẽ→ E so that, for every α ∈ I ,

pα ○ s = p̃α.

E = lim←ÐEα

Eγ Eα

Eβ

pγ,β

pγ,α

pβ,α

E Eα

Eβ

pβ

pα

pβ,α

Ẽ E

Eα

p̃α

s

pα
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Example

Example

Let D ∶= ((Xα)α∈I , (θα,β)α⪯β) be a direct system in TOP with direct limit
I ∶= (X , (θα)α∈I ).

For all β ⪰ α in I , define

Tβ,α ∶ C(Xβ) ∋ u ↦ u ○ θα,β ∈ C(Xα)

and
Tα ∶ C(X) ∋ u ↦ u ○ θαC(Xα).

Define
D⋆ ∶= ((C(Xα))α∈I , (Tβ,α)β⪰α)

and
I⋆ ∶= (C(X), (Tα)α∈I ) .

Then

(i) D⋆ is an inverse system in VL.

(ii) I⋆ = lim←ÐD
⋆ in VL.
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Dual Systems of Direct Systems

Direct System D Order DualÐÐÐÐÐ→ Inverse System D∼

Eα Eγ

Eβ

eα,β

eα,γ

eβ,γ

E∼γ E∼α

E∼β

e∼β,γ

e∼α,γ

e∼α,β

Inverse System
Order DualÐÐÐÐÐ→ Direct System
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The space C(X)∼∼
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Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and limÐ→Eα = E in IVL.

Then lim←ÐEα
∼ = E∼ in NVL.

That is, if lim←ÐEα
∼ = (F, (pα)α∈I ), then there exists a

unique lattice isomorphism T ∶ E∼ → F so that the diagram commutes:

E∼ F

E∼α

e∼α

T

pα

E = limÐ→Eα ⇒ E∼ = lim←ÐE∼α
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Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and limÐ→Eα = E in IVL.
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Preliminaries

Direct & Inverse Limits
The space C(X)∼∼

The space X̃

The order dual of C(X )

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu &
vdWalt 2024)

Let X be realcompact. Then

(i) C(X)∼ =Mc(X) = limÐ→M(Kα) in NIVL.

(ii) Then C(X)∼∼ = lim←ÐM(Kα)∼ in NVL.
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The bidual of C(K)
Preliminaries

Direct & Inverse Limits
The space C(X)∼∼

The space X̃

The set-up

Let Kα ⊆ Kβ ⊆ X be compact.

Tα,β ∶M(Kα) →M(Kβ) is a normal interval preserving lattice homomorphism.

T∼α,β ∶M(Kβ)∼ →M(Kα)∼ is a normal interval preserving lattice homomorphism.

T∼α,β ∶ C(K̃β) → C(K̃α) is a normal interval preserving lattice homomorphism.

T∼α,β(1K̃β
) = 1K̃α

.

There exists θα,β ∶ K̃α → K̃β continuous s.t. T∼α,β(u) = u ○ θα,β , u ∈ C(K̃β).
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The order bidual of C(X )

Theorem (de Jeu & vdWalt, 2024)

X a realcompact space; C = {Kα}α∈I cofinal in KX .

((K̃α)α∈I , (θα,β)α≼β) is an direct system in TOP.

limÐ→ K̃α exists in TOP.

If Y = limÐ→ K̃α in TOP then lim←ÐC(K̃α) = C(Y ) in VL.

Let X̃ ∶= κY . Then C(X̃) = C(Y ) = lim←ÐC(K̃α) = lim←ÐM(Kα)∼ = C(X)∼∼.

Theorem (De Jeu & vdWalt 2024)

Let X be a realcompact space. There exists a unique realcompact, extremally
disconnected space X̃ so that C(X)∼∼ is lattice isomorphic to C(X̃).
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Direct & Inverse Limits
The space C(X)∼∼

The space X̃

Some properties of X̃

Theorem (de Jeu & vdWalt 2024)

Let X be a realcompact space. The following statements are true.

(i) X̃ is hyper-disconnected.

(ii) For every K ∈ KX , there exists a continuous map ηK ∶ K̃ → X̃ which is a
homeomorphism onto its range.

(iii) Let ω ∶Mc(X) →Mc(X̃) be the canonical embedding of Mc(X) into its bidual.
Then ω maps X bijectively onto the isolated points in X̃ .

(iv) There exists a continuous surjection πX ∶ X̃ → X so that the canonical embedding
σX ∶ C(X) → C(X̃) is given by σX (u) = u ○ πX , u ∈ C(X).
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The space C(X)∼∼
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Further properties of X̃

Proposition (vdWalt 2025)

Let X be a realcompact space. Then

(i) For every K ∈ KX , ηK [K] is clopen in X̃ ;

(ii) C(X̃) contains C(K̃) as a band;

(iii) ⋃
K∈KX

ηK [K] is dense and C-embedded in X̃ ;

(iv) X̃ the realcompactification of ⋃
K∈KX

ηK [K].

Proposition (vdWalt 2025)

Let X be a realcompact space. Let µ ∈Mc(X) be a probability measure, and denote
by Ωµ its spectrum (so that L∞(µ) ≅ C(Ωµ). Then

(i) Ωµ is (homeomorphic to) a clopen subspace of X̃ .

(ii) C(X̃) contains L∞(µ) as a band.
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X̃ ⋍ R̃

Theorem (Dales et. al. 2016)

Let I = [0,1], and L an uncountable, second countable metrizable locally compact
space (e.g. an uncountable compact metrizable spae). Then M(K) is isometrically
lattice isomorphic to M(I).

Corollary

Let K be an uncountable, second countable metrizable locally compact space. Then
K̃ ⋍ Ĩ.
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The bidual of C(K)
Preliminaries

Direct & Inverse Limits
The space C(X)∼∼

The space X̃

X̃ ⋍ R̃

Theorem (vdWalt 2025)

Let X be a metrizable realcompact space. Assume that there exists an increasing
sequence {Kn}n∈N ⊆ KX so that

{Kn}n∈N is cofinal in KX ;

Kn+1 ∖Kn is uncountable for every n ∈ N.

Then X̃ ⋍ R̃.

E.g. X is a reflexive and separable Banach space with its weak topology.

If there are no measurable cardinals, every metric space is realcompact.
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The bidual of C(K)
Preliminaries

Direct & Inverse Limits
The space C(X)∼∼

The space X̃

X̃ ⋍ R̃
Let Jn = [−n,n] for all n ∈ N.

M(K2) =M(K1) ⊕M(K2 ∖K1) & M(J2) =M(J1) ⊕M(J2 ∖ J1)

S1 ∶M(K1) →M(J1) & R1 ∶M(K2 ∖K1) →M(J2 ∖ J1) isometric lattice
isomorphisms.

S2 ∶= S1 ⊕ R1 ∶M(K2) →M(J2) is an isometric lattice isomorphism

Inductively:
– M(Kn+1) =M(Kn) ⊕M(Kn+1 ∖Kn) & M(Jn+1) =M(Jn) ⊕M(Jn+1 ∖ Jn)
– Rn ∶M(Kn+1 ∖Kn) →M(Jn+1 ∖ Jn) an isometric lattice isomorphism
– Sn+1 ∶= Sn ⊕ Rn ∶M(Kn+1) →M(Jn+1) is an isometric lattice isomorphism

M(Kn) M(Jn)

M(Kn+1) M(Jn+1)

Sn

Tn,m Hn,m

Sn+1

Mc(X) = limÐ→M(Kn) ≅ limÐ→M(Jn) =Mc(R)

C(X̃) =Mc(X)∼ ≅Mc(R)∼ = C(R̃) ⇒ X̃ ⋍ R̃
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