On the order bidual of C(X)

Jan Harm van der Walt

Department of Mathematics and Applied Mathematics, University of Pretoria
Positivity XIl, Hammamet-Nabeul, Tunisia

Tuesday 10*" June, 2025

1/29



Table of contents

@ The bidual of C(K)

© Preliminaries

© Direct & Inverse Limits

© The space C(X)™~

© The space X

2/29



The bidual of C(K)

The bidual of C(K)

3/29



The bidual of C(K)

An old result

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K so that C(K)** is isometrically lattice (and ring) isomorphic to C(K).

4/29



The bidual of C(K)

An old result

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K so that C(K)** is isometrically lattice (and ring) isomorphic to C(K).

Kakutani 1: C(K) is an AM-space == C(K)* is an AL-space.

4/29



The bidual of C(K)

An old result

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K so that C(K)** is isometrically lattice (and ring) isomorphic to C(K).

Kakutani 1: C(K) is an AM-space == C(K)* is an AL-space.
Kakutani 2: C(K)* is an AL-space = C(K)** is a unital AM-space.

4/29



The bidual of C(K)

An old result

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K so that C(K)** is isometrically lattice (and ring) isomorphic to C(K).

Kakutani 1: C(K) is an AM-space == C(K)* is an AL-space.
Kakutani 2: C(K)* is an AL-space = C(K)** is a unital AM-space.

Kakutani 3: C(K)** is a unital AM-space = C(K)** = Q(K) for some compact
Hausdroff K

4/29



The bidual of C(K)

An old result

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space
K so that C(K)** is isometrically lattice (and ring) isomorphic to C(K).

Kakutani 1: C(K) is an AM-space == C(K)* is an AL-space.
Kakutani 2: C(K)* is an AL-space = C(K)** is a unital AM-space.

Kakutani 3: C(K)** is a unital AM-space = C(K)** = Q(K) for some compact
Hausdroff K

Definition

Let K be a compact Hausdorff space. We call K the hyper-Stonean cover of K.

4/29



The bidual of C(K)

Question

Can we replace compact K with realcompact X, and the norm (bi)dual
with the order (bi)dual?

5/29



The bidual of C(K)

Question

Can we replace compact K with realcompact X, and the norm (bi)dual
with the order (bi)dual?

Realcompact space: A Tychonoff space which is a closed subspace of some power of R.

For every topological space X there is a unique realcompact kX so that C(X) &
C(kX) are (ring and lattice) isomorphic.
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Preliminaries

Order Adjoints

T :E - F a positive operator; T~ : F~ — E”~ its order adjoint, ¢ — po T.

(i) T~ is positive and order continuous.

(if) T order continuous = T~[Fy.] c EJ..
(iii) T interval preserving = T~ a lattice homomorphism.
(iv) T a lattice homomorphism = T~ interval preserving.

(v) T~ lattice homomorphism = T interval preserving if °F~ = {0}.
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Preliminaries

Categories of Vector Lattices

OBJECTS MORPHISMS
VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL | Vector lattices Normal, interval preserving lattice homomorphisms
TOP | Topological spaces | Continuous functions
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Direct & Inverse Limits

Definitions

Let C be a category, | a directed set, E,, a vector lattice for each o € I, and
eq,3  Ea = Eg a C-morphism for all a < 3 in I.

e D= ((Ea)ae,, (ea’g)asﬁ) is a direct system in C if, for all a < B <y in I,

€3, © €, = €a,y-
o S:=(E, (ea)wer) is a compatible system of D in C if, for all « < 3 in I,
€go ey 3= €q-
© The compatible system S:= (E, (ea)ac) of D in C is the direct limit of D if for

any compatible system 8= (B, (8a)wer) of D in C there exists a unique
C-morphism r: E - E so that, for every ac€ |,

roeqg = éq.

E=limE,
—

Ea—>E7 Ea—>E B s B

\«A 5\}/, ;,\ &

Ea
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Direct & Inverse Limits

Example (de Jeu & vdWalt, 2024)

X a realcompact space
— Rx all nonempty compact subsets of X, ordered by inclusion;

— € ={Ka }ae cofinal in fx.
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Direct & Inverse Limits

Example (de Jeu & vdWalt, 2024)

X a realcompact space

— Rx all nonempty compact subsets of X, ordered by inclusion;

— € ={Ka }ae cofinal in fx.
0 Ko € Kg: Top:M(Ka) > M(Kg) Top(n)(B)=u(BnKe)
0 Ko €€ To:M(Ka) > Mc(X) Ta()(B) = u(BnKy)
o Dg:= ((M(Ka))aelv(Tmﬂ)a<5) is an inverse system in NIVL
o limM(Ka) = Mc(X) in NIVL.

Equivalently: Identify M(Kca) with the band {g € Mc(X) : S, € Ko} in Mc(X) &
Ta5. Tor with inclusions. Still, lim M(Kq) = Mc(X) = C(X)".

11/ 29
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Direct & Inverse Limits

Definitions

Let C be a category, | a directed set, E,, a vector lattice for each o € I, and
PB,a : Eg = Eqa a C-morphism for all 3> o in I.
o I:= ((Ea)ae,7 (Pﬁ,a)ﬁza) is an inverse system in C if, for alla < B <~ in I,
PB,a © Pv,p = Py,a-
o S:=(E, (pa)act) is a compatible system of Z in C if, for all « < 3 in I,
PB,a © PB = Pa-
© The compatible system S:= (E, (pa)aei) of Z in C is the inverse limit of T if for

any compatible system 8= (B, (Pa)ael) of T in C there exists a unique
C-morphism s : . - E so that, for every o€ |,

Pa©S = pa-
E =1limE.,
<«
Ey—% 3B, E— P B, s g
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Direct & Inverse Limits

Let D:= ((Xa)aelz (Ga,@)agg) be a direct system in TOP with direct limit
7= (Xa(ga)ael)-
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Let D:= ((Xa)aelz (Ga,@)agg) be a direct system in TOP with direct limit
1:= (Xa(ga)ael)-
o For all >« in I, define

Tg,0:C(Xg)2ur uob, geC(Xa)

and
Ta 100> 0 490 00Ka).
o Define
D* = ((C(Xa))aEh (Tﬁ,a)ﬁza)
and

T &= (C(X),(Ta)ael)'
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Direct & Inverse Limits

Let D:= ((Xa)aelz (Ga,@)agg) be a direct system in TOP with direct limit
1:= (Xa(ga)ael)-
o For all >« in I, define

Tg,0:C(Xg)2ur uob, geC(Xa)

and
Ta:C(X)3ur uo00,C(Xa).
o Define
D* = ((C(Xa))ael, (Ts,0) 20
and
T = (C(X), (Ta) ael) -
Then

(i) D* is an inverse system in VL.
(i) Z* = limD* in VL.
«—

14 /29
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Duality
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Direct & Inverse Limits

Dual Systems of Direct Systems

. Order Dual
Direct System D e e, Inverse System D~

Ea—>E'y E“—>E~

N S eﬁ\ /
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Order Dual .
Inverse System ———— Direct System
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Direct & Inverse Limits

Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let D:= ((Ea)ael, (ea,ﬂ)a$ﬂ) be a direct system in I\VL, and Ii_)mEa =E in IVL.
Then L@ Eo” =E~ in NVL.
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Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let D:= ((Ea)ael, (ea,ﬂ)a@) be a direct system in I\VL, and Ii_)mEO< =E in IVL

Then L@ Eo” =E~ in NVL. That is, ifLiEEaN = (F, (pa) el ), then there exists a
unique lattice isomorphism T : E~ — F so that the diagram commutes.

~—— T L F
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The space C(X)~~

The order dual of C(X)

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu &
vdWalt 2024)

Let X be realcompact. Then
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The space C(X)~~

The order dual of C(X)

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu &
vdWalt 2024)

Let X be realcompact. Then
(i) C(X)~ =Mc(X) = Ii_m)M(Ka) in NIVL.

(i) Then C(X)™™ = lim M(Kq)~ in NVL.
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The space C(X)~~

The set-up

Let K, C KB c X be compact.
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The space C(X)~~

The set-up

Let K, C KB c X be compact.

e T, 3:M(Ka)— M(Kg) is a normal interval preserving lattice homomorphism.

° T;,ﬁ :M(Kg)~ = M(Kqy)™ is a normal interval preserving lattice homomorphism.
° T, ;5 :C(Kg) — C(Ka) is a normal interval preserving lattice homomorphism.

°

T;,B(]'Rg) = lka'

o There exists 8, 3 : Ko — Kg continuous s.t. T, g(u)=uobypg, ue C(Kg).
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The space C(X)~~

The order bidual of C(X)

Theorem (de Jeu & vdWalt, 2024)

X a realcompact space; € = {Kq }qes cofinal in Rx.

((Ka)ash (9a75)a$@) is an direct system in TOP.
o lim K, exists in TOP.
—

o If Y =lim Ko in TOP then lim C(Ka) = C(Y) in VL.

o Let X:=rY. Then C(X) = C(Y) = lim C(Ka) = lim M(Ka)~ = C(X)™".
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The space C(X)~~

The order bidual of C(X)

Theorem (de Jeu & vdWalt, 2024)

X a realcompact space; € = {Kq }qes cofinal in Rx.

((Ka)asl» (9a75)a$@) is an direct system in TOP.
o lim K, exists in TOP.
—

o If Y =lim Ko in TOP then lim C(Ka) = C(Y) in VL.

o Let X:=rY. Then C(X) = C(Y) = lim C(Ka) = lim M(Ka)~ = C(X)™".

Theorem (De Jeu & vdWalt 2024)

Let X be a realcompact space. There exists a unique realcompact, extremally
disconnected space X so that C(X)~~ is lattice isomorphic to C(X).
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The space X

Some properties of X

Theorem (de Jeu & vdWalt 2024)
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The space X

Some properties of X

Theorem (de Jeu & vdWalt 2024)

Let X be a realcompact space. The following statements are true.
(i) X is hyper-disconnected.

(ii) For every K € fx, there exists a continuous map 1k : K — X which is a
homeomorphism onto its range.

(i) Let w:Mc(X) — Mc(X) be the canonical embedding of Mc(X) into its bidual.
Then w maps X bijectively onto the isolated points in X.

(iv) There exists a continuous surjection mx : X — X so that the canonical embedding
ox : C(X) = C(X) is given by ox(u) = uomx, ueC(X).

V.

23/29
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Let X be a realcompact space. Let € Mc(X) be a probability measure, and denote
by Q,, its spectrum (so that L*°(p) = C(2,). Then

(i) Qu is (homeomorphic to) a clopen subspace of X.
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The space X

Theorem (Dales et. al. 2016)

Let I=[0,1], and L an uncountable, second countable metrizable locally compact

space (e.g. an uncountable compact metrizable spae). Then M(K) is isometrically
lattice isomorphic to M(I).
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Let I=[0,1], and L an uncountable, second countable metrizable locally compact
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o
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The space X

Theorem (vdWalt 20

)

Let X be a metrizable realcompact space. Assume that there exists an increasing
sequence {Kn}peny € Rx so that

o {Kn}nen is cofinal in fx;
@ K,+1 \ K is uncountable for every n € N.

Then X = R.
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The space X

Theorem (vdWalt 2

Let X be a metrizable realcompact space. Assume that there exists an increasing
sequence {Kn}peny € Rx so that

o {Kn}nen is cofinal in fx;

@ K,+1 \ K is uncountable for every n € N.

Then X = R.

E.g. X is a reflexive and separable Banach space with its weak topology.

If there are no measurable cardinals, every metric space is realcompact.

26 /29



The space X

Let J, = [-n, n] for all ne N.
° M(K2) = M(K]_) ® M(K2 N\ K1) & M(J2) = M(Jl) 53} M(J2 N\ Jl)
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Sn
M(Kn) _— M(—/n)
Tn,m Hn,m

M(Kns1) 5—+1> M(Jnt1)
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o S;:M(Ki) > M(J1) & Ry : M(Ka\ Ki) = M(J2 \ J1) isometric lattice
isomorphisms.

@ 5p:=51® Ry : M(K2) - M(J) is an isometric lattice isomorphism

o Inductively:
= M(Kne1) = M(Kn) & M(Kns1  Kn) & M(Jps1) = M(Jn) & M(Jns1 ~ Jn)
— Rn : M(Kp+1 N Kn) > M(Jn41 \ Jn) an isometric lattice isomorphism
= Sni1:=5n® Rp : M(Kp41) & M(Jp+1) is an isometric lattice isomorphism

Sn
M(Kn) ———— M(Jn)
Tn,m Hp.m
M(Kns1) 5—+1> M(Jnt1)

o Mc(X) = lim M(Kp) = lim M(Jn) = Mc(R)

o C(X)=Mc(X)" 2M(R)" =C(R) = X =R
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The End

28 /29



The space X

References

@ M. de Jeu and J. H. van der Walt, The order bidual of C(X) for a realcompact
space. Quaest. Math. 47, Suppl., S101-S119 (2024).

@ W. van Amstel and J. H. van der Walt, Limits of vector lattices. J. Math. Anal.
Appl. 531, No. 1, Part 2, Article ID 127770, 47 p. (2024).

© J. H. van der Walt, The hyper-disconnected cover of a realcompact space, In
Preparation.

29 /29



	The bidual of C (K)
	Preliminaries
	Direct & Inverse Limits
	The space C (X)
	The space 

