The bidual of C(K)Preliminaries Direct & Inverse Limits The space $C(X)^{\sim\sim}$ The space \widetilde{X}

On the order bidual of C(X)

Jan Harm van der Walt

Department of Mathematics and Applied Mathematics, University of Pretoria Positivity XII, Hammamet-Nabeul, Tunisia

Tuesday 10th June, 2025

Table of contents

- lacksquare The bidual of C(K)
- 2 Preliminaries
- 3 Direct & Inverse Limits
- 1 The space $C(X)^{\sim}$
- **5** The space \widetilde{X}

The bidual of C(K)Preliminaries
Direct & Inverse Limits
The space $C(X)^{\sim\sim}$ The space \widetilde{X}

The bidual of C(K)

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \widetilde{K} so that $\mathrm{C}(K)^{**}$ is isometrically lattice (and ring) isomorphic to $\mathrm{C}(\widetilde{K})$.

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \widetilde{K} so that $\mathrm{C}(K)^{**}$ is isometrically lattice (and ring) isomorphic to $\mathrm{C}(\widetilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \widetilde{K} so that $\mathrm{C}(K)^{**}$ is isometrically lattice (and ring) isomorphic to $\mathrm{C}(\widetilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Kakutani 2: $C(K)^*$ is an AL-space $\Rightarrow C(K)^{**}$ is a unital AM-space.

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \widetilde{K} so that $\mathrm{C}(K)^{**}$ is isometrically lattice (and ring) isomorphic to $\mathrm{C}(\widetilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Kakutani 2: $C(K)^*$ is an AL-space $\Rightarrow C(K)^{**}$ is a unital AM-space.

Kakutani 3: $\mathrm{C}(K)^{**}$ is a unital AM-space \Rightarrow $\mathrm{C}(K)^{**}\cong\mathrm{C}(\tilde{K})$ for some compact Hausdroff \tilde{K}

Theorem

Let K be a compact Hausdorff space. There exists a unique compact Hausdorff space \widetilde{K} so that $\mathrm{C}(K)^{**}$ is isometrically lattice (and ring) isomorphic to $\mathrm{C}(\widetilde{K})$.

Kakutani 1: C(K) is an AM-space $\Rightarrow C(K)^*$ is an AL-space.

Kakutani 2: $C(K)^*$ is an AL-space $\Rightarrow C(K)^{**}$ is a unital AM-space.

Kakutani 3: $\mathrm{C}(K)^{**}$ is a unital AM-space \Rightarrow $\mathrm{C}(K)^{**}\cong\mathrm{C}(\tilde{K})$ for some compact Hausdroff \tilde{K}

Definition

Let K be a compact Hausdorff space. We call \widetilde{K} the hyper-Stonean cover of K.

Question

Can we replace compact K with realcompact X, and the norm (bi)dual with the order (bi)dual?

Question

Can we replace compact K with realcompact X, and the norm (bi)dual with the order (bi)dual?

Realcompact space: A Tychonoff space which is a closed subspace of some power of \mathbb{R} .

For every topological space X there is a unique realcompact κX so that $\mathrm{C}(X)$ & $\mathrm{C}(\kappa X)$ are (ring and lattice) isomorphic.

The bidual of C(K)Preliminaries
Direct & Inverse Limits
The space $C(X)^{\sim \sim}$ The space \widetilde{X}

Preliminaries

Theorem

Theorem

 $T: E \to F$ a positive operator; $T^{\sim}: F^{\sim} \to E^{\sim}$ its order adjoint, $\varphi \mapsto \varphi \circ T$.

(i) T^{\sim} is positive and order continuous.

Theorem

- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous $\Rightarrow T^{\sim}[F_{oc}^{\sim}] \subseteq E_{oc}^{\sim}$.

Theorem

- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous $\Rightarrow T^{\sim}[F_{oc}^{\sim}] \subseteq E_{oc}^{\sim}$.
- (iii) T interval preserving $\Rightarrow T^{\sim}$ a lattice homomorphism.

Theorem

- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous $\Rightarrow T^{\sim}[F_{oc}^{\sim}] \subseteq E_{oc}^{\sim}$.
- (iii) T interval preserving \Rightarrow T[~] a lattice homomorphism.
- (iv) T a lattice homomorphism $\Rightarrow T^{\sim}$ interval preserving.

Theorem

- (i) T^{\sim} is positive and order continuous.
- (ii) T order continuous $\Rightarrow T^{\sim}[F_{oc}^{\sim}] \subseteq E_{oc}^{\sim}$.
- (iii) T interval preserving \Rightarrow T[~] a lattice homomorphism.
- (iv) T a lattice homomorphism $\Rightarrow T^{\sim}$ interval preserving.
- (v) T^{\sim} lattice homomorphism $\Rightarrow T$ interval preserving if ${}^{\circ}F^{\sim} = \{0\}$.

Categories of Vector Lattices

	Objects	Morphisms
VL	Vector lattices	Lattice homomorphisms
NVL	Vector lattices	Normal lattice homomorphisms
IVL	Vector lattices	Interval preserving lattice homomorphisms
NIVL	Vector lattices	Normal, interval preserving lattice homomorphisms
TOP	Topological spaces	Continuous functions

The bidual of C(K)Preliminaries Direct & Inverse Limits The space $C(X)^{\sim \sim}$ The space \widetilde{X}

Direct Limits

Definitions

Definition

Let **C** be a category, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $e_{\alpha,\beta} : E_{\alpha} \to E_{\beta}$ a **C**-morphism for all $\alpha \leqslant \beta$ in I.

• $\mathcal{D} \coloneqq \left((\mathbf{E}_{\alpha})_{\alpha \in I}, (\mathbf{e}_{\alpha,\beta})_{\alpha \leqslant \beta} \right)$ is a direct system in \mathbf{C} if, for all $\alpha \leqslant \beta \leqslant \gamma$ in I,

$$e_{\beta,\gamma} \circ e_{\alpha,\beta} = e_{\alpha,\gamma}$$
.

• $\mathcal{S} \coloneqq (E, (e_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{D} in \mathbf{C} if, for all $\alpha \leqslant \beta$ in I,

$$e_{\beta} \circ e_{\alpha,\beta} = e_{\alpha}$$
.

The compatible system S:= (E, (e_α)_{α∈I}) of D in C is the direct limit of D if for any compatible system S̃:= (Ẽ, (ε̃_α)_{α∈I}) of D in C there exists a unique C-morphism r: E → Ẽ so that, for every α∈ I,

$$r \circ e_{\alpha} = \tilde{e}_{\alpha}$$
.

$$E = \lim_{\alpha \to \infty} E_{\alpha}$$

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_X.$

Example (de Jeu & vdWalt, 2024)

- \Re_X all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_{X}.$
 - $K_{\alpha} \subseteq K_{\beta}$: $T_{\alpha,\beta} : M(K_{\alpha}) \to M(K_{\beta})$

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_{X}.$
 - $K_{\alpha} \subseteq K_{\beta} \colon T_{\alpha,\beta} \colon M(K_{\alpha}) \to M(K_{\beta})$ $T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_{X}.$

$$\bullet \ \ K_{\alpha} \subseteq K_{\beta} \colon \ T_{\alpha,\beta} \colon \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta}) \qquad T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$$

•
$$K_{\alpha} \in \mathfrak{C}$$
: $T_{\alpha} : \mathrm{M}(K_{\alpha}) \to \mathrm{M}_{c}(X)$

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_X.$

•
$$K_{\alpha} \subseteq K_{\beta} \colon T_{\alpha,\beta} \colon \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta})$$
 $T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$K_{\alpha} \in \mathfrak{C}$$
: $T_{\alpha} : M(K_{\alpha}) \to M_{c}(X)$ $T_{\alpha}(\mu)(B) = \mu(B \cap K_{\alpha})$

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_X.$

•
$$K_{\alpha} \subseteq K_{\beta} \colon T_{\alpha,\beta} \colon \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta})$$
 $T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$K_{\alpha} \in \mathfrak{C}$$
: $T_{\alpha} : M(K_{\alpha}) \to M_{c}(X)$ $T_{\alpha}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$\mathcal{D}_{\mathfrak{C}} \coloneqq \left((M(\mathcal{K}_{\alpha}))_{\alpha \in I}, (\mathcal{T}_{\alpha,\beta})_{\alpha \leq \beta} \right)$$
 is an inverse system in **NIVL**

Example (de Jeu & vdWalt, 2024)

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_{X}.$

•
$$K_{\alpha} \subseteq K_{\beta} \colon T_{\alpha,\beta} \colon \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta})$$
 $T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$K_{\alpha} \in \mathfrak{C}$$
: $T_{\alpha} : M(K_{\alpha}) \to M_{c}(X)$ $T_{\alpha}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$\mathcal{D}_{\mathfrak{C}} \coloneqq \left((M(\mathcal{K}_{\alpha}))_{\alpha \in I}, \left(T_{\alpha,\beta} \right)_{\alpha \leqslant \beta} \right)$$
 is an inverse system in **NIVL**

•
$$\lim_{\alpha \to \infty} M(K_{\alpha}) = M_{c}(X)$$
 in **NIVL**.

Example (de Jeu & vdWalt, 2024)

X a realcompact space

- $-\Re_X$ all nonempty compact subsets of X, ordered by inclusion;
- $-\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I} \text{ cofinal in } \mathfrak{K}_X.$

•
$$K_{\alpha} \subseteq K_{\beta} \colon T_{\alpha,\beta} \colon \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta})$$
 $T_{\alpha,\beta}(\mu)(B) = \mu(B \cap K_{\alpha})$

•
$$K_{\alpha} \in \mathfrak{C}$$
: $T_{\alpha} : M(K_{\alpha}) \to M_{c}(X)$ $T_{\alpha}(\mu)(B) = \mu(B \cap K_{\alpha})$

$$\bullet \ \mathcal{D}_{\mathfrak{C}} \coloneqq \left(\left(\mathrm{M}(\mathit{K}_{\alpha}) \right)_{\alpha \in \mathit{I}}, \left(\mathit{T}_{\alpha,\beta} \right)_{\alpha \leqslant \beta} \right) \text{ is an inverse system in } \mathbf{NIVL}$$

•
$$\varinjlim M(K_{\alpha}) = M_{c}(X)$$
 in **NIVL**.

Equivalently: Identify $\mathrm{M}(K_{\alpha})$ with the band $\{\mu \in \mathrm{M}_{\mathrm{c}}(X) : S_{\mu} \subseteq K_{\alpha}\}$ in $\mathrm{M}_{\mathrm{c}}(X)$ & $T_{\alpha,\beta}$, T_{α} with inclusions. Still, $\varprojlim \mathrm{M}(K_{\alpha}) = \mathrm{M}_{\mathrm{c}}(X) = \mathrm{C}(X)^{\sim}$.

Inverse Limits

Definitions

Definition

Let \mathbf{C} be a category, I a directed set, E_{α} a vector lattice for each $\alpha \in I$, and $p_{\beta,\alpha} : \mathrm{E}_{\beta} \to \mathrm{E}_{\alpha}$ a \mathbf{C} -morphism for all $\beta \geqslant \alpha$ in I.

• $\mathcal{I} := ((E_{\alpha})_{\alpha \in I}, (p_{\beta,\alpha})_{\beta \geqslant \alpha})$ is an inverse system in \mathbf{C} if, for all $\alpha \leqslant \beta \leqslant \gamma$ in I,

$$p_{\beta,\alpha} \circ p_{\gamma,\beta} = p_{\gamma,\alpha}.$$

• $S := (E, (p_{\alpha})_{\alpha \in I})$ is a compatible system of \mathcal{I} in \mathbf{C} if, for all $\alpha \leq \beta$ in I,

$$p_{\beta,\alpha} \circ p_{\beta} = p_{\alpha}$$
.

The compatible system S := (E, (p_α)_{α∈I}) of I in C is the inverse limit of I if for any compatible system S := (E, (p̄_α)_{α∈I}) of I in C there exists a unique C-morphism s : E → E so that, for every α ∈ I,

$$p_{\alpha} \circ s = \tilde{p}_{\alpha}$$
.

$$E = \varprojlim E_{\alpha}$$

Example

Let $\mathcal{D} \coloneqq \left((X_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta} \right)$ be a direct system in **TOP** with direct limit $\mathcal{I} \coloneqq (X, (\theta_{\alpha})_{\alpha \in I})$.

Example

Let $\mathcal{D} \coloneqq \left((X_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta} \right)$ be a direct system in **TOP** with direct limit $\mathcal{I} \coloneqq (X, (\theta_{\alpha})_{\alpha \in I})$.

• For all $\beta \geq \alpha$ in I, define

$$T_{\beta,\alpha}: \mathrm{C}(X_{\beta}) \ni u \mapsto u \circ \theta_{\alpha,\beta} \in \mathrm{C}(X_{\alpha})$$

and

$$T_{\alpha}: \mathrm{C}(X) \ni u \mapsto u \circ \theta_{\alpha} \mathrm{C}(X_{\alpha}).$$

Define

$$\mathcal{D}^{\star} \coloneqq \left((\mathrm{C}(X_{\alpha}))_{\alpha \in I}, (T_{\beta,\alpha})_{\beta \succeq \alpha} \right)$$

and

$$\mathcal{I}^{\star} \coloneqq (\mathrm{C}(X), (T_{\alpha})_{\alpha \in I}).$$

Example

Let $\mathcal{D} \coloneqq \left((X_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta} \right)$ be a direct system in **TOP** with direct limit $\mathcal{I} \coloneqq (X, (\theta_{\alpha})_{\alpha \in I})$.

• For all $\beta \geq \alpha$ in I, define

$$T_{\beta,\alpha}: \mathrm{C}(X_{\beta}) \ni u \mapsto u \circ \theta_{\alpha,\beta} \in \mathrm{C}(X_{\alpha})$$

and

$$T_\alpha:\mathrm{C}(X)\ni u\mapsto u\circ\theta_\alpha\mathrm{C}(X_\alpha).$$

Define

$$\mathcal{D}^{\star} \coloneqq \left((\mathrm{C}(X_{\alpha}))_{\alpha \in I}, (T_{\beta,\alpha})_{\beta \succeq \alpha} \right)$$

and

$$\mathcal{I}^{\star} \coloneqq \left(\mathrm{C}(X), (T_{\alpha})_{\alpha \in I}\right).$$

Then

- (i) \mathcal{D}^* is an inverse system in **VL**.
- (ii) $\mathcal{I}^* = \lim \mathcal{D}^*$ in **VL**.

Duality

Dual Systems of Direct Systems

Dual Systems of Direct Systems

Inverse System $\xrightarrow{\text{Order Dual}}$ Direct System

Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let $\mathcal{D} \coloneqq \left((E_{\alpha})_{\alpha \in I}, (e_{\alpha,\beta})_{\alpha \leqslant \beta} \right)$ be a direct system in IVL, and $\varinjlim E_{\alpha} = E$ in IVL. Then $\varprojlim E_{\alpha}^{\sim} = E^{\sim}$ in NVL.

Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let $\mathcal{D}\coloneqq \left((\mathbb{E}_{\alpha})_{\alpha\in I}, (\mathbf{e}_{\alpha,\beta})_{\alpha\leqslant\beta}\right)$ be a direct system in IVL, and $\varinjlim \mathbb{E}_{\alpha}=\mathbb{E}$ in IVL. Then $\varprojlim \mathbb{E}_{\alpha}^{\sim}=\mathbb{E}^{\sim}$ in NVL. That is, if $\varprojlim \mathbb{E}_{\alpha}^{\sim}=(F,(p_{\alpha})_{\alpha\in I})$, then there exists a unique lattice isomorphism $T:\mathbb{E}^{\sim}\to F$ so that the diagram commutes:

Duality for Direct Limits

Theorem (v Amstel & vdWalt, 2024)

Let $\mathcal{D}\coloneqq \left((\mathbb{E}_{\alpha})_{\alpha\in I}, (e_{\alpha,\beta})_{\alpha\preccurlyeq\beta}\right)$ be a direct system in IVL, and $\varinjlim \mathbb{E}_{\alpha}=\mathbb{E}$ in IVL. Then $\varprojlim \mathbb{E}_{\alpha}^{\sim}=\mathbb{E}^{\sim}$ in NVL. That is, if $\varprojlim \mathbb{E}_{\alpha}^{\sim}=(F,(p_{\alpha})_{\alpha\in I})$, then there exists a unique lattice isomorphism $T:\mathbb{E}^{\sim}\to F$ so that the diagram commutes:

$$E = \varinjlim E_{\alpha} \Rightarrow E^{\sim} = \varinjlim E_{\alpha}^{\sim}$$

The bidual of C(K)Preliminaries Direct & Inverse Limits The space $C(X)^{\sim \sim}$ The space \widetilde{X}

The space $C(X)^{\sim}$

The order dual of C(X)

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu & vdWalt 2024)

Let X be realcompact. Then

The order dual of C(X)

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu & vdWalt 2024)

Let X be realcompact. Then

(i)
$$C(X)^{\sim} = M_c(X) = \underset{\longrightarrow}{\lim} M(K_{\alpha})$$
 in **NIVL**.

The order dual of C(X)

Theorem (Hewitt 1950, Gould & Mahowald 1962, v Amstel & vdWalt 2024, de Jeu & vdWalt 2024)

Let X be realcompact. Then

- (i) $C(X)^{\sim} = M_c(X) = \varinjlim M(K_{\alpha})$ in **NIVL**.
- (ii) Then $C(X)^{\sim \sim} = \lim_{n \to \infty} M(K_{\alpha})^{\sim}$ in **NVL**.

- $T_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}: \mathrm{M}(K_{\beta})^{\sim} \to \mathrm{M}(K_{\alpha})^{\sim}$ is a normal interval preserving lattice homomorphism.

- $T_{\alpha,\beta}: M(K_{\alpha}) \to M(K_{\beta})$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}: M(K_{\beta})^{\sim} \to M(K_{\alpha})^{\sim}$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}: \mathrm{C}(\tilde{K}_{\beta}) \to \mathrm{C}(\tilde{K}_{\alpha})$ is a normal interval preserving lattice homomorphism.

•
$$T_{\alpha,\beta}^{\sim}(\mathbf{1}_{\tilde{K}_{\beta}}) = \mathbf{1}_{\tilde{K}_{\alpha}}$$
.

- $T_{\alpha,\beta}: \mathrm{M}(K_{\alpha}) \to \mathrm{M}(K_{\beta})$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}: M(K_{\beta})^{\sim} \to M(K_{\alpha})^{\sim}$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}: \mathrm{C}(\tilde{K}_{\beta}) \to \mathrm{C}(\tilde{K}_{\alpha})$ is a normal interval preserving lattice homomorphism.
- $T_{\alpha,\beta}^{\sim}(\mathbf{1}_{\tilde{K}_{\beta}}) = \mathbf{1}_{\tilde{K}_{\alpha}}$.
- There exists $\theta_{\alpha,\beta}: \tilde{K}_{\alpha} \to \tilde{K}_{\beta}$ continuous s.t. $T_{\alpha,\beta}^{\sim}(u) = u \circ \theta_{\alpha,\beta}, u \in C(\tilde{K}_{\beta}).$

The order bidual of C(X)

Theorem (de Jeu & vdWalt, 2024)

X a realcompact space; $\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I}$ cofinal in \mathfrak{K}_{X} .

- $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.
- $\varinjlim \tilde{K}_{\alpha}$ exists in **TOP**.
- If $Y = \varinjlim \tilde{K}_{\alpha}$ in **TOP** then $\varprojlim C(\tilde{K}_{\alpha}) = C(Y)$ in **VL**.
- Let $\widetilde{X} := \kappa Y$. Then $C(\widetilde{X}) = C(Y) = \lim_{n \to \infty} C(\widetilde{K}_{\alpha}) = \lim_{n \to \infty} M(K_{\alpha})^{n} = C(X)^{n}$.

The order bidual of C(X)

Theorem (de Jeu & vdWalt, 2024)

X a realcompact space; $\mathfrak{C} = \{K_{\alpha}\}_{{\alpha} \in I}$ cofinal in \mathfrak{K}_{X} .

- $((\tilde{K}_{\alpha})_{\alpha \in I}, (\theta_{\alpha,\beta})_{\alpha \leq \beta})$ is an direct system in **TOP**.
- $\varinjlim \tilde{K}_{\alpha}$ exists in **TOP**.
- If $Y = \varinjlim \tilde{K}_{\alpha}$ in **TOP** then $\varprojlim C(\tilde{K}_{\alpha}) = C(Y)$ in **VL**.
- Let $\widetilde{X} := \kappa Y$. Then $C(\widetilde{X}) = C(Y) = \lim_{n \to \infty} C(\widetilde{K}_{\alpha}) = \lim_{n \to \infty} M(K_{\alpha})^{n} = C(X)^{n}$.

Theorem (De Jeu & vdWalt 2024)

Let X be a realcompact space. There exists a unique realcompact, extremally disconnected space \widetilde{X} so that $\mathrm{C}(X)^{\sim\sim}$ is lattice isomorphic to $\mathrm{C}(\widetilde{X})$.

The bidual of C(K)Preliminaries Direct & Inverse Limits The space $C(X)^{\sim \sim}$ The space \widetilde{X}

The space \widetilde{X}

Theorem (de Jeu & vdWalt 2024)

Theorem (de Jeu & vdWalt 2024)

Let X be a realcompact space. The following statements are true.

(i) \widetilde{X} is hyper-disconnected.

Theorem (de Jeu & vdWalt 2024)

- (i) \widetilde{X} is hyper-disconnected.
- (ii) For every $K \in \mathfrak{K}_X$, there exists a continuous map $\eta_K : \tilde{K} \to \widetilde{X}$ which is a homeomorphism onto its range.

Theorem (de Jeu & vdWalt 2024)

- (i) \widetilde{X} is hyper-disconnected.
- (ii) For every $K \in \mathfrak{K}_X$, there exists a continuous map $\eta_K : \tilde{K} \to \widetilde{X}$ which is a homeomorphism onto its range.
- (iii) Let $\omega: \mathrm{M}_c(X) \to \mathrm{M}_c(\widetilde{X})$ be the canonical embedding of $\mathrm{M}_c(X)$ into its bidual. Then ω maps X bijectively onto the isolated points in \widetilde{X} .

Theorem (de Jeu & vdWalt 2024)

- (i) \widetilde{X} is hyper-disconnected.
- (ii) For every $K \in \mathfrak{K}_X$, there exists a continuous map $\eta_K : \tilde{K} \to \widetilde{X}$ which is a homeomorphism onto its range.
- (iii) Let $\omega: \mathrm{M}_c(X) \to \mathrm{M}_c(\widetilde{X})$ be the canonical embedding of $\mathrm{M}_c(X)$ into its bidual. Then ω maps X bijectively onto the isolated points in \widetilde{X} .
- (iv) There exists a continuous surjection $\pi_X : \widetilde{X} \to X$ so that the canonical embedding $\sigma_X : \mathrm{C}(X) \to \mathrm{C}(\widetilde{X})$ is given by $\sigma_X(u) = u \circ \pi_X$, $u \in \mathrm{C}(X)$.

Proposition (vdWalt 2025)

Proposition (vdWalt 2025)

Let X be a realcompact space. Then

(i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;

Proposition (vdWalt 2025)

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;

Proposition (vdWalt 2025)

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;
- (iii) $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$ is dense and C-embedded in \widetilde{X} ;

Proposition (vdWalt 2025)

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;
- (iii) $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$ is dense and C-embedded in \widetilde{X} ;
- (iv) \widetilde{X} the realcompactification of $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$.

Proposition (vdWalt 2025)

Let X be a realcompact space. Then

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;
- (iii) $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$ is dense and C-embedded in \widetilde{X} ;
- (iv) \widetilde{X} the realcompactification of $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$.

Proposition (vdWalt 2025)

Let X be a realcompact space. Let $\mu \in \mathrm{M}_c(X)$ be a probability measure, and denote by Ω_{μ} its spectrum (so that $L^{\infty}(\mu) \cong \mathrm{C}(\Omega_{\mu})$. Then

Proposition (vdWalt 2025)

Let X be a realcompact space. Then

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;
- (iii) $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$ is dense and C-embedded in \widetilde{X} ;
- (iv) \widetilde{X} the realcompactification of $\bigcup_{K \in \mathfrak{K}_Y} \eta_K[K]$.

Proposition (vdWalt 2025)

Let X be a realcompact space. Let $\mu \in \mathrm{M}_c(X)$ be a probability measure, and denote by Ω_{μ} its spectrum (so that $L^{\infty}(\mu) \cong \mathrm{C}(\Omega_{\mu})$. Then

(i) Ω_{μ} is (homeomorphic to) a clopen subspace of \widetilde{X} .

Further properties of \hat{X}

Proposition (vdWalt 2025)

Let X be a realcompact space. Then

- (i) For every $K \in \mathfrak{K}_X$, $\eta_K[K]$ is clopen in \widetilde{X} ;
- (ii) $C(\widetilde{X})$ contains $C(\widetilde{K})$ as a band;
- (iii) $\bigcup_{K \in \mathfrak{K}_X} \eta_K[K]$ is dense and C-embedded in \widetilde{X} ;
- (iv) \widetilde{X} the realcompactification of $\bigcup_{K \in \mathbb{R}_{\times}} \eta_K[K]$.

Proposition (vdWalt 2025)

Let X be a realcompact space. Let $\mu \in \mathrm{M}_c(X)$ be a probability measure, and denote by Ω_{μ} its spectrum (so that $L^{\infty}(\mu) \cong \mathrm{C}(\Omega_{\mu})$. Then

- (i) Ω_{μ} is (homeomorphic to) a clopen subspace of \widetilde{X} .
- (ii) $C(\widetilde{X})$ contains $L^{\infty}(\mu)$ as a band.

Theorem (Dales et. al. 2016)

Let $\mathbb{I}=[0,1]$, and L an uncountable, second countable metrizable locally compact space (e.g. an uncountable compact metrizable spae). Then $\mathrm{M}(K)$ is isometrically lattice isomorphic to $\mathrm{M}(\mathbb{I})$.

Theorem (Dales et. al. 2016)

Let $\mathbb{I}=[0,1]$, and L an uncountable, second countable metrizable locally compact space (e.g. an uncountable compact metrizable spae). Then $\mathrm{M}(K)$ is isometrically lattice isomorphic to $\mathrm{M}(\mathbb{I})$.

Corollary

Let K be an uncountable, second countable metrizable locally compact space. Then $\widetilde{K} \backsimeq \widetilde{\mathbb{T}}$

Theorem (vdWalt 2025)

Let X be a metrizable realcompact space. Assume that there exists an increasing sequence $\{K_n\}_{n\in\mathbb{N}}\subseteq\mathfrak{K}_X$ so that

- $\{K_n\}_{n\in\mathbb{N}}$ is cofinal in \mathfrak{K}_X ;
- $K_{n+1} \setminus K_n$ is uncountable for every $n \in \mathbb{N}$.

Then $\widetilde{X} \simeq \widetilde{\mathbb{R}}$.

Theorem (vdWalt 2025)

Let X be a metrizable realcompact space. Assume that there exists an increasing sequence $\{K_n\}_{n\in\mathbb{N}}\subseteq\mathfrak{K}_X$ so that

- $\{K_n\}_{n\in\mathbb{N}}$ is cofinal in \mathfrak{K}_X ;
- $K_{n+1} \setminus K_n$ is uncountable for every $n \in \mathbb{N}$.

Then $\widetilde{X} \simeq \widetilde{\mathbb{R}}$.

E.g. X is a reflexive and separable Banach space with its weak topology.

Theorem (vdWalt 2025)

Let X be a metrizable realcompact space. Assume that there exists an increasing sequence $\{K_n\}_{n\in\mathbb{N}}\subseteq\mathfrak{K}_X$ so that

- $\{K_n\}_{n\in\mathbb{N}}$ is cofinal in \mathfrak{K}_X ;
- $K_{n+1} \setminus K_n$ is uncountable for every $n \in \mathbb{N}$.

Then $\widetilde{X} \cong \widetilde{\mathbb{R}}$.

E.g. X is a reflexive and separable Banach space with its weak topology.

If there are no measurable cardinals, every metric space is realcompact.

$$\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$$

- $\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$
- $S_1: \mathrm{M}(K_1) \to \mathrm{M}(J_1)$ & $R_1: \mathrm{M}(K_2 \setminus K_1) \to \mathrm{M}(J_2 \setminus J_1)$ isometric lattice isomorphisms.

- $\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$
- $S_1: \mathrm{M}(K_1) \to \mathrm{M}(J_1)$ & $R_1: \mathrm{M}(K_2 \setminus K_1) \to \mathrm{M}(J_2 \setminus J_1)$ isometric lattice isomorphisms.
- $S_2 \coloneqq S_1 \oplus R_1 : \mathrm{M}(K_2) o \mathrm{M}(J_2)$ is an isometric lattice isomorphism

- $\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$
- $S_1: \mathrm{M}(K_1) \to \mathrm{M}(J_1)$ & $R_1: \mathrm{M}(K_2 \setminus K_1) \to \mathrm{M}(J_2 \setminus J_1)$ isometric lattice isomorphisms.
- $S_2 \coloneqq S_1 \oplus R_1 : \mathrm{M}(K_2) o \mathrm{M}(J_2)$ is an isometric lattice isomorphism
- Inductively:
 - $-\operatorname{M}(K_{n+1})=\operatorname{M}(K_n)\oplus\operatorname{M}(K_{n+1}\smallsetminus K_n)\ \&\ \operatorname{M}(J_{n+1})=\operatorname{M}(J_n)\oplus\operatorname{M}(J_{n+1}\smallsetminus J_n)$
 - $-R_n: \mathrm{M}(K_{n+1} \setminus K_n) \to \mathrm{M}(J_{n+1} \setminus J_n)$ an isometric lattice isomorphism
 - $-S_{n+1}\coloneqq S_n\oplus R_n:\mathrm{M}(K_{n+1}) o\mathrm{M}(J_{n+1})$ is an isometric lattice isomorphism

- $\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$
- $S_1: \mathrm{M}(K_1) \to \mathrm{M}(J_1)$ & $R_1: \mathrm{M}(K_2 \setminus K_1) \to \mathrm{M}(J_2 \setminus J_1)$ isometric lattice isomorphisms.
- $S_2 \coloneqq S_1 \oplus R_1 : \mathrm{M}(K_2) o \mathrm{M}(J_2)$ is an isometric lattice isomorphism
- Inductively:
 - $-\operatorname{M}(K_{n+1})=\operatorname{M}(K_n)\oplus\operatorname{M}(K_{n+1}\smallsetminus K_n)\ \&\ \operatorname{M}(J_{n+1})=\operatorname{M}(J_n)\oplus\operatorname{M}(J_{n+1}\smallsetminus J_n)$
 - $-R_n: \mathrm{M}(K_{n+1} \setminus K_n) \to \mathrm{M}(J_{n+1} \setminus J_n)$ an isometric lattice isomorphism
 - $-\ S_{n+1} \coloneqq S_n \oplus R_n : \mathrm{M}(K_{n+1}) \to \mathrm{M}(J_{n+1}) \ \text{is an isometric lattice isomorphism}$

$$\begin{array}{c|c} \mathrm{M}(K_n) & \xrightarrow{S_n} & \mathrm{M}(J_n) \\ \\ T_{n,m} & & \downarrow \\ \\ \mathrm{M}(K_{n+1}) & \xrightarrow{S_{n+1}} & \mathrm{M}(J_{n+1}) \end{array}$$

- $\bullet \ \mathrm{M}(K_2) = \mathrm{M}(K_1) \oplus \mathrm{M}(K_2 \smallsetminus K_1) \ \& \ \mathrm{M}(J_2) = \mathrm{M}(J_1) \oplus \mathrm{M}(J_2 \smallsetminus J_1)$
- $S_1: \mathrm{M}(K_1) \to \mathrm{M}(J_1)$ & $R_1: \mathrm{M}(K_2 \setminus K_1) \to \mathrm{M}(J_2 \setminus J_1)$ isometric lattice isomorphisms.
- $S_2 := S_1 \oplus R_1 : \mathrm{M}(K_2) \to \mathrm{M}(J_2)$ is an isometric lattice isomorphism
- Inductively:

$$-\operatorname{M}(K_{n+1})=\operatorname{M}(K_n)\oplus\operatorname{M}(K_{n+1}\smallsetminus K_n)\ \&\ \operatorname{M}(J_{n+1})=\operatorname{M}(J_n)\oplus\operatorname{M}(J_{n+1}\smallsetminus J_n)$$

$$-R_n: \mathcal{M}(K_{n+1} \setminus K_n) \to \mathcal{M}(J_{n+1} \setminus J_n)$$
 an isometric lattice isomorphism

$$-\ S_{n+1} \coloneqq S_n \oplus R_n : \mathrm{M}(K_{n+1}) \to \mathrm{M}(J_{n+1}) \ \text{is an isometric lattice isomorphism}$$

$$\begin{array}{ccc}
M(K_n) & \xrightarrow{S_n} & M(J_n) \\
T_{n,m} & & \downarrow & H_{n,m} \\
M(K_{n+1}) & \xrightarrow{S_{n+1}} & M(J_{n+1})
\end{array}$$

$$\bullet \ \mathrm{M}_c(X) = \varinjlim \mathrm{M}(K_n) \cong \varinjlim \mathrm{M}(\mathrm{J}_\mathrm{n}) = \mathrm{M}_c(\mathbb{R})$$

•
$$C(\widetilde{X}) = M_c(X)^{\sim} \cong M_c(\mathbb{R})^{\sim} = C(\widetilde{\mathbb{R}}) \Rightarrow \widetilde{X} \simeq \widetilde{\mathbb{R}}$$

The End

References

- M. de Jeu and J. H. van der Walt, The order bidual of C(X) for a realcompact space. Quaest. Math. 47, Suppl., S101-S119 (2024).
- W. van Amstel and J. H. van der Walt, Limits of vector lattices. J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127770, 47 p. (2024).
- J. H. van der Walt, The hyper-disconnected cover of a realcompact space, In Preparation.