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Motivation
Let Ω1 and Ω2 be non-empty compact Hausdorff spaces. Denote

M(C(Ω1),C(Ω2)) := {T : C(Ω1) → C(Ω2);

T linear and positive,T (1Ω1) = 1Ω2}.

Theorem (Phelps/Ellis, 1963).
Let T ∈ M(C(Ω1),C(Ω2)). The following are equivalent:
(i) T is an extreme point of M(C(Ω1),C(Ω2)).
(ii) T is a Riesz homomorphism.
(iii) T is an algebra homomorphism.
(iv) T ′ maps extreme points of M(C(Ω2),R) to extreme points of

M(C(Ω1),R).
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Functional representation (Kadison, 1951)

Let X be an order unit space with order unit uX . Define the weakly∗

compact convex set

ΣX := {φ : X → R; φ linear and positive, φ(uX ) = 1}

and define ΛX as the set of extreme points of ΣX .

The weak∗ closure ΛX of ΛX is a compact Hausdorff space (with the
weak∗ topology) and the map

ΦX : X → C(ΛX ), x 7→ (φ 7→ φ(x)),

is linear and bipositive.
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Functional representation (Kadison, 1951)

Theorem (Kalauch, Lemmens, van Gaans, 2014).
Let X be an order unit space. Then ΦX [X ] is order dense in C(ΛX ),
i.e., for all f ∈ C(ΛX ), one has

f = inf{ΦX (x); x ∈ X ,ΦX (x) ≥ f }.

We have ΦX (uX ) = 1ΛX
. Hence:

Order unit spaces ∼= Order dense subspaces of some C(Ω) space
that contain the constant functions
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Generalizations of Riesz homomorphisms
For M ⊆ X , we denote
Mu := {x ∈ X ; ∀m ∈ M : x ≥ m}, M l := {x ∈ X ; ∀m ∈ M : x ≤ m}.

Definition.
Let X ,Y ordered vector spaces. A linear map T : X → Y is called a
(a) (van Haandel, 1993) Riesz* homomorphism if, for every non-

empty finite subset F of X , one has

T [F ul] ⊆ T [F ]ul,

(b) (Buskes–van Rooij, 1993) Riesz homomorphism if, for every
x , y ∈ X , one has

T [{x , y}u]l = T [{x , y}]ul.
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Riesz and Riesz* homomorphisms on order unit spaces

Let X be an order unit space with order unit uX . Recall that

ΣX = {φ : X → R; φ linear and positive, φ(uX ) = 1},
ΛX = extΣX .

Proposition.
Let X be an order unit space and let φ ∈ ΣX .
(a) (Hayes, 1966) φ ∈ ΛX if and only if φ is a Riesz homomorphism.
(b) (van Haandel, 1993) φ ∈ ΛX if and only if φ is a Riesz* homo-

morphism.
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Riesz* homomorphisms on spaces of continuous functions

Theorem (van Imhoff, 2018).
Let Ω1 and Ω2 be non-empty compact Hausdorff spaces and let X
and Y be order dense subspaces of C(Ω1) and C(Ω2), respectively.
Let T : X → Y be linear. Then, under some mild conditions on X ,
the following statements are equivalent:
(i) T is a Riesz* homomorphism
(ii) There exist w ∈ C(Ω2), w ≥ 0, and α : Ω2 → Ω1 continuous

on {t ∈ Ω2; w(t) > 0} such that

T (x)(t) = w(t)x(α(t)) (x ∈ X ).
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Markov operators on order unit spaces

Let (X , uX ), (Y , uY ) be order unit spaces. We denote

M(X ,Y ) := {T : X → Y ; T linear and positive,T (uX ) = uY }.

Question.
Let T ∈ M(X ,Y ). Are the following statements equivalent?
(i) T is an extreme point of M(X ,Y ).
(ii) T is a Riesz homomorphism.
(iii) T ′[ΛY ] ⊆ ΛX .

If Y = R, this is true by the above (M(X ,R) = ΣX ).
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Let T ∈ M(X ,Y ). Are the following statements equivalent?
(i) T is an extreme point of M(X ,Y ).
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Markov operators on order unit spaces
Proposition (Kalauch, S., van Gaans, 2021).
Let T ∈ M(X ,Y ). If T ′[ΛY ] ⊆ ΛX , then T is a Riesz homomor-
phism.

Example.
The converse is not true: Let

X := {f ∈ C([−1, 1]); f (0) = 1
2(f (1) + f (−1))},

Y := C([−1, 1]),
T : X → Y , T (f ) = f ,
δ0 : Y → R, δ0(f ) = f (0).

Then T is a Riesz homomorphism and we have
δ0 ∈ ΛY , but T ′(δ0) ∈ ΛX \ ΛX .

Hence, T ′[ΛY ] ̸⊆ ΛX .
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Proposition (S., 2025).
Let T ∈ M(X ,Y ). The following are equivalent:
(i) T is a Riesz* homomorphism.
(ii) T ′[ΛY ] ⊆ ΛX .
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Markov operators on order unit spaces

Question.
Let T ∈ M(X ,Y ). Are the following statements equivalent?
(i) T is an extreme point of M(X ,Y ).
(ii) T is a Riesz homomorphism.
(iii) T ′[ΛY ] ⊆ ΛX .

Proposition (S., 2025)
Let (X , uX ), (Y , uY ) be order unit spaces and T ∈ M(X ,Y ). If T
satisfies T ′[ΛY ] ⊆ ΛX , then T is an extreme point of M(X ,Y ).
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Example.
Let X = Y = R3 endowed with the cones

X+ := pos{(1, 0, 1)⊤, (−1, 0, 1)⊤, (0, 1, 1)⊤, (0,−1, 1)⊤},
Y+ := {(x1, x2, x3) ∈ X ; x2

1 + x2
2 ≤ x2

3 , x3 ≥ 0}.

Then (0, 0, 1)⊤ =: e(3) is an order unit for X and Y and we have

ΛX = ΛX = {(1, 1, 1)⊤, (−1, 1, 1)⊤, (1,−1, 1)⊤, (−1,−1, 1)⊤},
ΛY = ΛY = {(v1, v2, 1) ∈ R3; v2

1 + v2
2 = 1}

One calculates that

M(X ,Y ) = {A ∈ R3×3; −e(3) ≤Y a(i) ≤Y e(3), i ∈ {1, 2}, a(3) = e(3)}.
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It follows that

extM(X ,Y ) = {A ∈ R3×3; a(i) ∈ {±e(3), (λ1, λ2, 0)⊤; (λ1, λ2) ∈ S1},
a(3) = e(3)}.

Let now

A =

0 0 0
0 1 0
1 0 1

 .

Then A ∈ extM(X ,Y ), but

A′

1
0
1

 = A⊤

1
0
1

 =

1
0
1

 ̸∈ ΛX = ΛX .

Note that (1, 0, 1)⊤ ∈ ΛY = ΛY .
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Question.
Let T ∈ M(X ,Y ). Are the following statements equivalent?
(i) T is an extreme point of M(X ,Y ).
(ii) T is a Riesz homomorphism.
(iii) T ′[ΛY ] ⊆ ΛX .

The example before also shows that (i) =⇒ (ii) does not hold in
general.
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Proposition (S., 2025).
Let (X , uX ), (Y , uY ) be order unit spaces. If every Riesz* homomor-
phism in M(X ,Y ) is extreme in M(X ,Y ), then ΛX = ΛX .

Remarks.
(a) (Kalauch, S., van Gaans, 2021) The fact that ΛX = ΛX already

implies that every Riesz* homomorphism T : X → Y is a Riesz
homomorphism.

(b) There exist order unit spaces X with ΛX ̸= ΛX .

Janko Stennder
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Proposition (S., 2025).
Let (X , uX ), (Y , uY ) be order unit spaces. Assume that ΛX = ΛX .
Let T ∈ M(X ,Y ). If T is a Riesz* homomorphism, then T is
extreme in M(X ,Y ).

Remarks.
(a) If ΛX ̸= ΛX , then there are examples of Riesz* homomorphisms

in M(X ,Y ) that are not extreme.
(b) It is still open whether Riesz homomorphisms are extreme in

M(X ,Y ) if we drop the assumption ΛX = ΛX .
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Let (X , uX ), (Y , uY ) be order unit spaces and T ∈ M(X ,Y ).

T ′[ΛY ] ⊆ ΛX

T is a Riesz hom. T ∈ extM(X ,Y )

/

?

/

/

If ΛX = ΛX , then
T ′[ΛY ] ⊆ ΛX

T is a Riesz hom. T ∈ extM(X ,Y )

/

/
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Let Ω1 and Ω2 be non-empty compact Hausdorff spaces. Denote

M(C(Ω1),C(Ω2)) := {T : C(Ω1) → C(Ω2);

T linear and positive,T (1Ω1) = 1Ω2}.

Theorem (Phelps/Ellis, 1963).
Let T ∈ M(C(Ω1),C(Ω2)). The following are equivalent:
(i) T is an extreme point of M(C(Ω1),C(Ω2)).
(ii) T is a Riesz homomorphism.
(iii) T is an algebra homomorphism.
(iv) T ′ maps extreme points of M(C(Ω2),R) to extreme points of

M(C(Ω1),R).
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Let A and B be ordered algebras with multiplicative units eA and eB .
Denote

M(A,B) := {T : A → B; T linear and positive,T (eA) = eB}.

Theorem (van Putten, 1980).
Let A,B be Archimedean f -algebras and T ∈ M(A,B). The fol-
lowing are equivalent:
(i) T is an extreme point of M(A,B).
(ii) T is a Riesz homomorphism.
(iii) T is an algebra homomorphism.
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Proposition (S., 2025).
Let A,B be Archimedean f -algebras with units eA, eB > 0, X ⊆ A,
Y ⊆ B order dense subalgebras, and T ∈ M(X ,Y ).
(a) If T is a Riesz* homomorphism, then T is an algebra homo-

morphism.
(b) If T is an algebra homomorphism, then T is an extreme point

of M(X ,Y ).

Corollary (S, 2025).
Let (X , uX ), (Y , uY ) be order unit spaces such that ΦX [X ] and
ΦY [Y ] are subalgebras of C(ΛX ) and C(ΛY ).
Then every Riesz* homomorphism T : X → Y is a Riesz homomor-
phism.
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Proposition (S., 2025).
Let (X , uX ), (Y , uY ) be order unit spaces such that ΦX [X ] and
ΦY [Y ] are subalgebras of C(ΛX ) and C(ΛY ).
Let T : X → Y be linear.
(a) If T is a positive algebra homomorphism, then T is a Riesz*

homomorphism.
(b) If T is an extreme point of M(X ,Y ), then T is an algebra

homomorphism.
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Theorem (S., 2025).
Let (X , uX ), (Y , uY ) be order unit spaces such that ΦX [X ] and
ΦY [Y ] are subalgebras of C(ΛX ) and C(ΛY ).
Let T ∈ M(X ,Y ). Then the following are equivalent:
(i) T is extreme in M(X ,Y ).
(ii) T is an algebra homomorphism.
(iii) T is a Riesz homomorphism.
(iv) T is a Riesz* homomorphism.
(v) T ′[ΛY ] ⊆ ΛX .
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