Lattice uniformities

Kevin Abela

June 6, 2025

- Uniformities
- 2 Lattice Uniformities
- 3 The lattice uniformity \mathcal{U}^*
- 4 The connection with Riesz spaces
- $footnote{5}$ The uniformity \mathcal{U}^* on sublattices

For a subset $U \subseteq X \times X$, let $U^{-1} = \{(y,x) : (x,y) \in U\}$. A set satisfying $U = U^{-1}$ is said to be *symmetric* and the diagonal of the product $X \times X$ will be denoted by $\Delta(X)$. Also for sets $U, V \subseteq X \times X$, let $U \circ V$ be the composition $\{(x,z) : (x,y) \in U \text{ and } (y,z) \in V\}$.

A symmetric subset U of $X \times X$ is said to be an *entourage* of the diagonal and the entourages of the diagonal are denoted by \mathscr{D}_X .

A uniformity on a set X is a subfamily \mathcal{U} of \mathscr{D}_X such that

- lacktriangledown if $U\in\mathcal{U}$, then there exists $V\in\mathcal{U}$ such that $V\circ V\subseteq U$;
- \bullet if $U \in \mathcal{U}$ and $U \subseteq V \in \mathcal{D}_X$ then $V \in \mathcal{U}$.

For a uniformity \mathcal{U} , the pair (X,\mathcal{U}) is said to be a uniform space. For a uniform space (X,\mathcal{U}) and $U \in \mathcal{U}$, let $U(x) = \{y \in X : (x,y) \in U\}$.

Theorem 2

Let (X, \mathcal{U}) be a uniform space. The family $\mathcal{T}_{\mathcal{U}} = \{G \subseteq X : for every x \in G \text{ there exists a } V \in \mathcal{U} \text{ such that } V(x) \subseteq G\}$ is a topology on the set X.

The topology $\mathcal{T}_{\mathcal{U}}$ induced in Theorem 2 is known as the **topology** induced by the uniformity \mathcal{U} .

A subfamily $\mathcal X$ of a uniformity $\mathcal U$ is a base for a uniformity $\mathcal U$ if and only if for every $U \in \mathcal U$, there exists $B \in \mathcal X$ such that $B \subseteq \mathcal U$.

Definition 4

A subfamily $\mathcal{Y} \subseteq \mathcal{U}$ is a **subbase** for \mathcal{U} if and only if the family of finite intersections of elements of \mathcal{Y} is a base for \mathcal{U} .

A function $f: X \to Y$ from a uniform space (X, \mathcal{U}) to a uniform space (Y, \mathcal{V}) is said to be uniformly continuous if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $f_2(U) \subseteq V$ i.e for $(x,y) \in U \implies (f(x),f(y)) \in V$.

Lemma 6

Let $f: X \to Y$ be a map from a set X to a uniform space (Y, \mathcal{U}) . The set $\{f_2^{-1}(U): U \in \mathcal{U}\}$ is a base for a uniformity \mathcal{U}_f on X. Furthermore, \mathcal{U}_f is the smallest uniformity for which f is uniformly continuous.

Lemma 7

Let (X, \mathcal{U}) and (Y, \mathcal{V}) be uniform spaces. The sets $\{((x_1, y_1), (x_2, y_2)) : U \in \mathcal{U}, V \in \mathcal{V}, (x_1, x_2) \in U \text{ and } (y_1, y_2) \in V\}$ is a base for a product uniformity on $X \times Y$. Furthermore, this uniformity induces on $X \times Y$ the product topology $\mathscr{T}_{\mathcal{U}} \times \mathscr{T}_{\mathcal{V}}$.

Theorem 8

Let (X, \mathcal{U}) be a uniform space and ρ a pseudo-metric for X. Then, ρ is uniformly continuous on $X \times X$ relative to the product uniformity if and only if the set $U_r = \{(x,y) : \rho(x,y) < r\}$ is an element of \mathcal{U} for every r > 0.

Let (X, \mathcal{U}) be a uniform space. The uniformity \mathcal{U} is said to be pseudo-metrizable if there exists a pseudo-metric ρ such that $\mathcal{U} = \mathcal{U}_{\rho}$.

Theorem 10 (Metrization Theorem)

A uniform space (X, \mathcal{U}) is pseudo-metrizable if and only if \mathcal{U} has a countable base.

Theorem 11

Every uniformity on X can be generated by a family of uniformly continuous pseudo-metrics on $X \times X$.

Theorem 12

A topology \mathcal{T} for a set X is the uniform topology for some uniformity for X if and only if the topological space (X, \mathcal{T}) is completely regular.

Proposition 13

Let (X, \mathcal{U}) be a uniform space. Then, $\mathscr{T}_{\mathcal{U}}$ is Tychanoff if and only if $\bigcap_{U \in \mathcal{U}} U = \Delta(X)$.

Let L be a lattice. A lattice uniformity is a uniformity on a lattice making the lattice operations \vee and \wedge uniformly continuous. A uniform lattice is a lattice endowed with a lattice uniformity.

Proposition 14 ([2], H. Weber, 1991)

Let $\mathcal U$ be a uniformity on a lattice $\mathcal L$. Then the following statements are equivalent :

- U is a lattice uniformity;
- o for every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ satisfying $V \lor V \subseteq U$ and $V \land V \subseteq U$;
- of for every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ satisfying $V \vee \Delta(L) \subseteq U$ and $V \wedge \Delta(L) \subseteq U$.

A topology ${\mathscr T}$ is called locally order convex it ${\mathscr T}$ has a base of order convex open sets.

Proposition 16 (H. Weber)

Let $\mathcal U$ be a lattice uniformity on L and $\mathscr T_{\mathcal U}$ the induced topology. Then $(L,\mathscr T_{\mathcal U})$ is a locally order convex topological lattice. Moreover, every $U\in\mathcal U$ contains a $V\in\mathcal U$ such that V(x) is order convex for every $x\in L$.

Proposition 17

Every Hausdorff uniform lattice (L, \mathcal{U}) is a sublattice and a dense subspace of a complete (as a uniform space) Hausdorff uniform lattice $(\tilde{L}, \tilde{\mathcal{U}})$.

As uniformities are generated by pseudo-metrics, lattice uniformities are also generated by a family of pseudo-metrics.

Proposition 18 (H. Weber)

Let (L, \mathcal{U}) be a uniform lattice and q > 1. Then \mathcal{U} is generated by a family of pseudo-metrics P satisfying

$$\rho(x \lor z, y \lor z) \le \rho(x, y)$$
 and $\rho(x \land z, y \land z) \le q \cdot \rho(x, y)$

for every $x, y, z \in L$ and $\rho \in D$.

In Proposition 18, $q \neq 1$ unless L is a distributive lattice.

Remark 19

Recall if $f: L \to (L, \mathcal{U})$ is a map and for every $U \in \mathcal{U}$, $U_f = \{(x, y) \in L^2 : (f(x), f(y)) \in U\}$. The collection $\{U_f: U \in \mathcal{U}\}$ is a base for a uniformity \mathcal{U}_f .

Theorem 20 (H. Weber)

If (L, \mathcal{U}) is a uniform lattice and $f: L \to L$ is a lattice homomorphism. Then, \mathcal{U}_f is a lattice uniformity.

Theorem 21 (H. Weber)

If (L, \mathcal{U}) is a uniform lattice and F is a collection of lattice homomorphisms. Then \mathcal{U}_F is a lattice uniformity.

For a lattice L, consider the maps $f_{(a,b)}(x) = (x \wedge b) \vee a$ and let $g_{(a,b)}(x) = (x \vee a) \wedge b$ for $a,b,x \in L$.

Proposition 22

For a lattice L the following statements are equivalent:

- L is distributive.
- ① $f_{(a,b)}$ is a lattice homomorphism for all $a, b \in L$.
- $g_{(a,b)}$ is a lattice homomorphism for all $a,b \in L$.

If L is distributive, then $f_{(a,b)} = f_{(a,a\vee b)} = g_{(a,a\vee b)}$ and $g_{(a,b)} = g_{(a\wedge b,b)} = f_{(a\wedge b,b)}$ for every $a,b\in L$.

Lemma 23

Let (L, \mathcal{U}) be a uniform lattice. Then,

- \mathfrak{O} $\mathcal{U}_{(a,b)} \subseteq \mathcal{U}$;
- **1** $\mathcal{U}_{(a,b)} \cap [a,b]^2 = \mathcal{U} \cap [a,b]^2$.
- ① If V is a lattice uniformity such that $V \subseteq U$, then $V_{(a,b)} \subseteq U_{(a,b)}$.

Let $J(L) := \{(a, b) \in L^2 : a \leq b\}$. Then for any $J \subseteq J(L)$, from Theorem 21, one can consider the lattice uniformity \mathcal{U}_J having as subbase the union of the collection of lattice uniformities $\{\mathcal{U}_{(a,b)} : (a,b) \in J\}$.

Proposition 24

Let J and J' be non-empty subsets of J(L).

- ① $V_J \subseteq U_J \subseteq \mathcal{U}$ for every lattice uniformity V coarser than \mathcal{U} .
- If for every $(a,b) \in J$ there exists $(a',b') \in J'$ satisfying $a' \le a \le b \le b'$, then $\mathcal{U}_J \subseteq \mathcal{U}_{J'}$ and $(\mathcal{U}_J)_{J'} = (\mathcal{U}_{J'})_J = \mathcal{U}_J$.
- \mathcal{U}_J is the weakest lattice uniformity which agrees with \mathcal{U} on [a,b] for all $(a,b)\in J$.
- The topology $\mathcal{T}_{\mathcal{U}_J}$ is the weakest lattice topology which agrees with $\mathcal{T}_{\mathcal{U}}$ on [a,b] for all $(a,b) \in J$.

Let $\mathcal{U}^* = \mathcal{U}_{J(L)}$. Then Proposition 24 above leads to the following corollary

Corollary 25

- $(\mathcal{U}^*)^* = \mathcal{U}^*.$
- $\mathfrak{I}_{\mathcal{U}^*}$ -topology is the weakest lattice topology which agrees with $\mathfrak{I}_{\mathcal{U}}$ on any order bounded subset of L.

In the Corollary above, it is deduced that \mathcal{U}^* is the weakest lattice uniformity which coincides with \mathcal{U} on every order bounded subset of L and, $\mathcal{T}_{\mathcal{U}^*}$ is the weakest lattice topology which agrees with $\mathcal{T}_{\mathcal{U}}$. However, there are examples showing that this is not necessarily true for general uniformities.

Proposition 26

Let S be a sublattice of L and $I = J(S) = \{(a, b) \in S^2 : a \le b\}$. Then \mathcal{U}_I is Hausdorff iff \mathcal{U} is Hausdorff and $x = \sup_{s \in S} s \land x = \inf_{s \in S} s \lor x$ for every $x \in L$.

Corollary 27

 \mathcal{U} is Hausdorff iff \mathcal{U}^* is Hausdorff.

A (not necessarily Hausdorff) topology τ on a Riesz space V is said to be locally solid if it is linear and has a base at zero consisting of solid sets. The pair (V,τ) where V is a Riesz space and τ is locally solid is known as a locally solid Riesz space.

Definition 29

Let (V,τ) be a locally solid Riesz space and $A\subseteq V$ a Riesz order ideal. A net $(x_\gamma)_{\gamma\in\Gamma}$ in V unbounded τ -converges to $x\in V$ with respect to A if $(|x_\gamma-x|\wedge a)_{\gamma\in\Gamma}$ τ -converges to 0 for every $a\in A$.

Theorem 30 (Taylor, 2019)

Let (V, τ) be a Hausdorff locally solid Riesz space, $\mathfrak U$ its 0-neighbourhood system and A a Riesz order ideal of V. Then the sets

$${x \in V : |x| \land a \in U} (a \in A_+, U \in \mathfrak{U})$$

form a 0-neighbourhood base for a Hausdorff locally solid topology $\mathfrak{u}_{\mathcal{A}^{\mathcal{T}}}$ on V.

Let (V, τ) be a Hausdorff locally solid Riesz space. A net $(x_{\gamma})_{\gamma \in \Gamma}$ converges to x w.r.t. $\mathfrak{u}_{A}\tau$ iff $|x_{\gamma} - x| \wedge a \xrightarrow{\tau} 0$ for any $a \in A_{+}$.

Proposition 31 ([1],E. Chetcuti, H. Weber, K.A)

Let (V, τ) be a Hausdorff locally solid Riesz space and $\mathfrak U$ the neighbourhood base of 0 for τ . For any $s, t \in V$ such that $s \leq t$, let

$$U_{(s,t)} = \{(x,y) \in V^2 : f_{(s,t)}(x) - f_{(s,t)}(y) \in U\}.$$

Then $\{U_{(s,t)}:U\in\mathfrak{U}\}$ is a base for a lattice uniformity.

Corollary 32

Let (V,τ) be a Hausdorff locally solid Riesz space and A a Riesz solid subspace of V. If $J=\{(a,b)\in V^2:b-a\in A_+\}$ and $\mathfrak U$ is the neighbourhood base of 0 for τ , then the collection $\{U_{(s,t)}:U\in \mathfrak U \text{ where } (s,t)\in J\}$ is a subbase for the uniformity $\mathcal U_J$.

Theorem 33 ([1], E. Chetcuti, H. Weber, K.A)

Let (V,τ) be a Hausdorff locally solid Riesz space and A a Riesz solid subspace of V. Let \mathcal{U}_J be the uniformity induced by $J=\{(a,b)\in V^2:b-a\in A_+\}$. Then, $\mathscr{T}_{\mathcal{U}_J}=\mathfrak{u}_A\tau$. In particular, $\mathscr{T}_{\mathcal{U}^*}=\mathfrak{u}\tau$.

Let D(L) be the set of pseudo-metrics ρ on L satisfying

$$\rho(x \lor z, y \lor z) \le \rho(x, y)$$
 and $\rho(x \land z, y \land z) \le \rho(x, y)$

and for $J \subseteq J(L)$, $(a,b) \in J$ and $\rho \in D(L)$ let $\rho_{(a,b)}$ denote the pseudo-metric on L defined by $\rho_{(a,b)}(x,y) = \rho(f_{(a,b)}(x), f_{(a,b)}(y))$.

Proposition 34

Let \mathcal{U} be a lattice uniformity on a distributive lattice L. For $J \subseteq J(L)$, the lattice uniformity \mathcal{U}_J is generated by the family of pseudo-metrics $\{\rho_{(a,b)}: \rho \in D_{\mathcal{U}} \text{ and } (a,b) \in J\}$.

Let (L,\mathcal{U}) be a uniform lattice and $J\subseteq J(L)$. Let $\widetilde{J}=\{(a,b):a\leq b \text{ and there exists } (a_{\alpha},b_{\alpha})\in J \text{ such that } a_{\alpha}\to a \text{ and } b_{\alpha}\to b \text{ w.r.t } \mathscr{T}_{\mathcal{U}}\}.$

Proposition 35

Let $\emptyset \neq J \subseteq J(L)$. Then $\mathcal{U}_J = \mathcal{U}_{\tilde{I}}$.

Corollary 36

Let S be a dense sublattice of (L, \mathcal{U}) and $\mathcal{V} = \mathcal{U}|_{S}$. Then $\mathcal{U}^*|_{S} = \mathcal{V}^*$.

Theorem 37

Let S be a dense sublattice of (L, \mathcal{U}) and $\mathcal{V} = \mathcal{U}|_{S}$.

- ① Then $U^* = U$ iff $V^* = V$.

Theorem 38 ([1],E. Chetcuti, H. Weber, K.A)

Let H be a dense Riesz subspace of a locally solid Riesz space (V, τ) and let $\sigma = \tau|_{H}$. Then $\mathfrak{u}\tau = \tau$ iff $\mathfrak{u}\sigma = \sigma$.

- Kevin Abela, Emmanuel Chetcuti, and Hans Weber, Lattice uniformities inducing unbounded convergence, J. Math. Anal. Appl. 523 (2023), no. 1, Paper No. 126994, 18.
- [2] Hans Weber, Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings, Ann. Mat. Pura Appl. (4) 160 (1991), 347–370 (1992). MR 1163215