Bandwise functions in Dedekind complete Φ-algebras

Luan Naude Based on joint work with Eder Kikianty, Mark Roelands, Christopher Schwanke

University of Pretoria

2 June 2025

Dedekind complete Φ-algebras

Throughout this talk, E will be a (real or complex) Dedekind complete Φ -algebra.

Definition:

A real Φ -algebra is a real vector lattice F with an associative multiplication which has a unit and that satisfies the usual algebra properties as well as the following:

- if $x, y \ge 0$ then $xy \ge 0$, and
- if $x \wedge y = 0$, and $z \geq 0$, then $(xz) \wedge y = (zx) \wedge y = 0$.

Dedekind complete Φ-algebras

Throughout this talk, E will be a (real or complex) Dedekind complete Φ -algebra.

Definition:

A real Φ -algebra is a real vector lattice F with an associative multiplication which has a unit and that satisfies the usual algebra properties as well as the following:

- if $x, y \ge 0$ then $xy \ge 0$, and
- if $x \wedge y = 0$, and $z \geq 0$, then $(xz) \wedge y = (zx) \wedge y = 0$.

If F is Dedekind complete, it can be complexified to a complex Φ -algebra E=F+iF, where the modulus is given by

$$|x+iy| = \sup\{(\cos\theta)x + (\sin\theta)y : \theta \in [0, 2\pi]_{\mathbb{R}}\}.$$

Order convergence

Notation:

For $\& \subseteq E$, we write $\& \searrow 0$ to mean & has infimum 0, and $\& \downarrow 0$ if & is also downwards directed

Order convergence

Notation:

For $\& \subseteq E$, we write $\& \searrow 0$ to mean & has infimum 0, and $\& \downarrow 0$ if & is also downwards directed

Definition:

A net $(x_{\alpha})_{\alpha}$ converges (in order) to x in E if there exists an $\mathcal{E} \searrow 0$ such that for every $\varepsilon \in \mathcal{E}$ there exists an α_0 such that $|x_{\alpha} - x| \leq \varepsilon$ holds for all $\alpha \geq \alpha_0$.

Order continuity

Definition:

A function $f : dom(f) \to E$ is **(order) continuous at** x if whenever $x_{\alpha} \to x$ in dom(f), then $f(x_{\alpha}) \to f(x)$ in E.

Order continuity

Definition:

A function $f : dom(f) \to E$ is **(order) continuous at** x if whenever $x_{\alpha} \to x$ in dom(f), then $f(x_{\alpha}) \to f(x)$ in E.

Proposition:

A function $f: dom(f) \to E$ is continuous at x if and only if for all $\Delta \downarrow 0$ there exists an $\& \searrow 0$ such that for every $\varepsilon \in \&$ there exists a $\delta \in \Delta$ satisfying

$$y \in dom(f)$$
 and $|y - x| \le \delta \implies |f(y) - f(x)| \le \varepsilon$.

Intervals and neighbourhoods

Notation:

We write $x \ll y$ to mean y - x is a weak order unit of E.

Intervals and neighbourhoods

Notation:

We write $x \ll y$ to mean y - x is a weak order unit of E.

Definition:

Let $c, r \in E$ and $r \ge 0$. We define

$$\overline{N}(c,r) := \{z \in E : |z-c| \le r\}, \text{ and }$$

 $N(c,r) := \{z \in E : |z-c| \ll r\} \quad (r \gg 0).$

Intervals and neighbourhoods

Notation:

We write $x \ll y$ to mean y - x is a weak order unit of E.

Definition:

Let $c, r \in E$ and $r \ge 0$. We define

$$\overline{N}(c,r) := \{z \in E : |z-c| \le r\}, \text{ and } N(c,r) := \{z \in E : |z-c| \ll r\} \quad (r \gg 0).$$

If E is real, we also use interval notation: For a \leq b, define

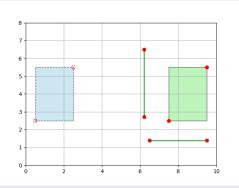
$$[a,b] := \{x \in E : a \le x \le b\}, \text{ and}$$

 $(a,b) := \{x \in E : a \ll x \ll b\} \quad (a \ll b).$

Example: Intervals

Example:

In \mathbb{R}^2 , the open intervals are the interiors of rectangles. The closed intervals are rectangles, and horizontal and vertical line segments.



Derivatives

Introduced by Roelands and Schwanke in [3].

Definition:

A function $f : dom(f) \rightarrow E$ has derivative (resp. super derivative) f'(c) at $c \in dom(f)$ if

• there exists an $r \gg 0$ such that $N(c, r) \subseteq dom(f)$,

Derivatives

Introduced by Roelands and Schwanke in [3].

Definition:

A function $f: dom(f) \to E$ has derivative (resp. super derivative) f'(c) at $c \in dom(f)$ if

- there exists an $r \gg 0$ such that $N(c, r) \subseteq dom(f)$, and
- ② for every $\Delta \downarrow 0$ there is an $\mathcal{E} \searrow 0$ such that for all $\mathcal{E} \in \mathcal{E}$, there is a $\delta \in \Delta$ such that for all $z \in \mathcal{N}(c,r)$ (resp. $z \in \text{dom}(f)$),

$$|z-c| \leq \delta \implies |f(z)-f(c)-(z-c)f'(c)| \leq |z-c|\varepsilon.$$

Properties of the derivative

Proposition:

Consider $f: dom(f) \rightarrow E$ and $g: dom(g) \rightarrow E$.

- If f and g are (super) differentiable at c, then f + g is (super) differentiable at c with (f + g)'(c) = f'(c) + g'(c).
- ② If f and g are (super) differentiable at c, then fg is (super) differentiable at c with (fg)'(c) = f'(c)g(c) + f(c)g'(c).

Proposition:

If $f : dom(f) \rightarrow E$ is super differentiable at c then f is continuous at c.

Does having a zero derivative imply a function is constant?

Does having a zero derivative imply a function is constant?

Example:

Consider $f:(0,1)\to\mathbb{R}^\mathbb{N}$ defined by

$$f(x) = \begin{cases} 1, & x_n \to \frac{1}{2} \\ 0, & otherwise. \end{cases}$$

Does having a zero derivative imply a function is constant?

Example:

Consider $f:(0,1)\to\mathbb{R}^\mathbb{N}$ defined by

$$f(x) = \begin{cases} 1, & x_n \to \frac{1}{2} \\ 0, & otherwise. \end{cases}$$

Let $x \in (0,1)$ and define $r := (\frac{1}{n} \wedge x_n \wedge (1-x_n))_{n \in \mathbb{N}}$. Then $(x-r,x+r) \subseteq (0,1)$.

Does having a zero derivative imply a function is constant?

Example:

Consider $f:(0,1)\to\mathbb{R}^\mathbb{N}$ defined by

$$f(x) = \begin{cases} 1, & x_n \to \frac{1}{2} \\ 0, & otherwise. \end{cases}$$

Let $x \in (0,1)$ and define $r := (\frac{1}{n} \wedge x_n \wedge (1-x_n))_{n \in \mathbb{N}}$. Then $(x-r,x+r) \subseteq (0,1)$.

For any $y \in (x-r, x+r)$, $|x_n-y_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$ so $y_n \to \frac{1}{2}$ if and only if $x_n \to \frac{1}{2}$.

Does having a zero derivative imply a function is constant?

Example:

Consider $f:(0,1)\to\mathbb{R}^\mathbb{N}$ defined by

$$f(x) = \begin{cases} 1, & x_n \to \frac{1}{2} \\ 0, & otherwise. \end{cases}$$

Let $x \in (0,1)$ and define $r := (\frac{1}{n} \wedge x_n \wedge (1-x_n))_{n \in \mathbb{N}}$. Then $(x-r,x+r) \subseteq (0,1)$.

For any $y \in (x-r,x+r)$, $|x_n-y_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$ so $y_n \to \frac{1}{2}$ if and only if $x_n \to \frac{1}{2}$.

Therefore, f is constant on (x - r, x + r) and f'(x) = 0.

Bandwise functions

Definition:

A function $f: dom(f) \to E$ is **bandwise** if for any $x, y \in dom(f)$ and any band projection \mathbb{P} , $\mathbb{P}x = \mathbb{P}y$ implies $\mathbb{P}f(x) = \mathbb{P}f(y)$.

Bandwise functions

Definition:

A function $f: dom(f) \to E$ is **bandwise** if for any $x, y \in dom(f)$ and any band projection \mathbb{P} , $\mathbb{P}x = \mathbb{P}y$ implies $\mathbb{P}f(x) = \mathbb{P}f(y)$.

Example:

A function $f: dom(f) \to \mathbb{R}^2$ is bandwise if and only if f(x,y) = (g(x),h(y)) for some $g,h: \mathbb{R} \to \mathbb{R}$.

Bandwise functions

Definition:

A function $f: dom(f) \to E$ is **bandwise** if for any $x, y \in dom(f)$ and any band projection \mathbb{P} , $\mathbb{P}x = \mathbb{P}y$ implies $\mathbb{P}f(x) = \mathbb{P}f(y)$.

Example:

A function $f: dom(f) \to \mathbb{R}^2$ is bandwise if and only if f(x,y) = (g(x),h(y)) for some $g,h: \mathbb{R} \to \mathbb{R}$.

Proposition:

If $f: N(c,r) \to E$ is super differentiable, then f is bandwise.

Band decompositions of E

For any $s,t\in\mathbb{R}$, we have that exactly one of the following holds:

$$s < t$$
, $s > t$, or $s = t$.

Band decompositions of E

For any $s, t \in \mathbb{R}$, we have that exactly one of the following holds:

$$s < t$$
, $s > t$, or $s = t$.

Definition:

Let $x, y \in E$. We define

$$B_{x < y} \coloneqq B_{(y-x)^+}, \quad B_{x \le y} \coloneqq B_{y < x}^d, \quad \text{and} \quad B_{x=y} \coloneqq B_{x \le y} \cap B_{y \le x}.$$

Band decompositions of E

For any $s, t \in \mathbb{R}$, we have that exactly one of the following holds:

$$s < t$$
, $s > t$, or $s = t$.

Definition:

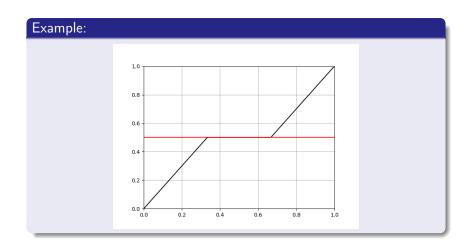
Let $x, y \in E$. We define

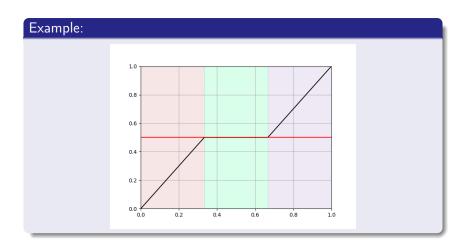
$$B_{x < y} \coloneqq B_{(y - x)^+}, \quad B_{x \le y} \coloneqq B_{y < x}^d, \quad \text{and} \quad B_{x = y} \coloneqq B_{x \le y} \cap B_{y \le x}.$$

Proposition:

For any $x, y \in E$,

$$E = B_{x < y} \oplus B_{x \ge y} = B_{x < y} \oplus B_{x > y} \oplus B_{x = y}.$$





Classical theorems

For these results, E is real.

The Boundedness Theorem

Let $f: [a, b] \to E$ be continuous and bandwise. Then f is bounded.

Classical theorems

For these results, E is real.

The Boundedness Theorem

Let $f: [a, b] \to E$ be continuous and bandwise. Then f is bounded.

The Intermediate Value Theorem

Let $f: [a, b] \to E$ be continuous and bandwise, and let $y \in [f(a) \land f(b), f(a) \lor f(b)]$. Then there exists a $c \in [a, b]$ such that f(c) = y.

Classical theorems

For these results, E is real.

The Boundedness Theorem

Let $f: [a, b] \to E$ be continuous and bandwise. Then f is bounded.

The Intermediate Value Theorem

Let $f: [a, b] \to E$ be continuous and bandwise, and let $y \in [f(a) \land f(b), f(a) \lor f(b)]$. Then there exists a $c \in [a, b]$ such that f(c) = y.

The Extreme Value Theorem

Let $f: [a, b] \to E$ be continuous and bandwise. Then there exist $c, d \in [a, b]$ such that $f(c) \le f(x) \le f(d)$ for all $x \in [a, b]$.

Classical theorems (cont.)

The Mean Value Theorem

Let $f: [a, b] \to E$ be continuous on [a, b] and super differentiable on (a, b). Then there exists an $x_0 \in (a, b)$ such that

$$(b-a)f'(x_0) = f(b) - f(a).$$

Classical theorems (cont.)

The Mean Value Theorem

Let $f: [a, b] \to E$ be continuous on [a, b] and super differentiable on (a, b). Then there exists an $x_0 \in (a, b)$ such that

$$(b-a)f'(x_0) = f(b) - f(a).$$

Proposition:

Let $f:(a,b)\to E$ be super differentiable with f'=0. Then f is constant.

The Riemann integral in E

Consider a bounded function $f : [a, b] \rightarrow E$, where $[a, b] \subseteq E$.

Notation:

For a given interval $I \subseteq [a, b]$, we define

$$m_I = \inf_{x \in I} f(x)$$
 and $M_I = \sup_{x \in I} f(x)$.

The Riemann integral in E

Consider a bounded function $f : [a, b] \rightarrow E$, where $[a, b] \subseteq E$.

Notation:

For a given interval $I \subseteq [a, b]$, we define

$$m_I = \inf_{x \in I} f(x)$$
 and $M_I = \sup_{x \in I} f(x)$.

Definition:

A **partition** of [a, b] is a totally ordered, finite subset of [a, b], say $P = \{a = x_0 \le x_1 \le \cdots \le x_n = b\}$.

The Riemann integral in E

Consider a bounded function $f : [a, b] \rightarrow E$, where $[a, b] \subseteq E$.

Notation:

For a given interval $I \subseteq [a, b]$, we define

$$m_I = \inf_{x \in I} f(x)$$
 and $M_I = \sup_{x \in I} f(x)$.

Definition:

A partition of [a, b] is a totally ordered, finite subset of [a, b], say $P = \{a = x_0 \le x_1 \le \cdots \le x_n = b\}$. We define the **lower** and **upper sums** of f with respect to P by

$$L(f,P) := \sum_{i=1}^{n} m_{[x_{i-1},x_i]}(x_i - x_{i-1})$$

$$U(f,P) := \sum_{i=1}^{n} M_{[x_{i-1},x_i]}(x_i - x_{i-1}).$$

The Riemann integral in E (cont.)

Definition:

The lower and upper integrals of f are defined by

$$L(f) = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}$$

 $U(f) = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}.$

The Riemann integral in E (cont.)

Definition:

The **lower** and **upper integrals** of f are defined by

$$L(f) = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}$$

 $U(f) = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}.$

We say f is (Riemann) integrable on [a,b] if U(f)=L(f) and in this case, we write

$$\int_a^b f(x)dx := U(f) = L(f).$$

Example:

Consider $f:[(0,0),(1,1)]\to\mathbb{R}^2$ defined by f(x,y)=(y,x).

Consider
$$f: [(0,0),(1,1)] \to \mathbb{R}^2$$
 defined by $f(x,y) = (y,x)$.
For $P = \{(0,0),(1,0),(1,1)\}$,

$$L(f, P) = (0,0)(1,0) + (0,1)(0,1) = (0,0) + (0,1) = (0,1).$$

Consider
$$f: [(0,0),(1,1)] \to \mathbb{R}^2$$
 defined by $f(x,y) = (y,x)$.
For $P = \{(0,0),(1,0),(1,1)\}$,
$$L(f,P) = (0,0)(1,0) + (0,1)(0,1) = (0,0) + (0,1) = (0,1).$$
For $Q = \{(0,0),(0,1),(1,1)\}$,
$$U(f,Q) = (1,0)(0,1) + (1,1)(1,0) = (0,0) + (1,0) = (1,0).$$

Consider
$$f: [(0,0),(1,1)] \to \mathbb{R}^2$$
 defined by $f(x,y) = (y,x)$.
For $P = \{(0,0),(1,0),(1,1)\}$,
$$L(f,P) = (0,0)(1,0) + (0,1)(0,1) = (0,0) + (0,1) = (0,1).$$
For $Q = \{(0,0),(0,1),(1,1)\}$,
$$U(f,Q) = (1,0)(0,1) + (1,1)(1,0) = (0,0) + (1,0) = (1,0).$$
So, $L(f,P) \not< U(f,Q)$.

Example:

Consider
$$f: [(0,0), (1,1)] \to \mathbb{R}^2$$
 defined by $f(x,y) = (y,x)$.
For $P = \{(0,0), (1,0), (1,1)\}$,
$$L(f,P) = (0,0)(1,0) + (0,1)(0,1) = (0,0) + (0,1) = (0,1).$$
For $Q = \{(0,0), (0,1), (1,1)\}$,
$$U(f,Q) = (1,0)(0,1) + (1,1)(1,0) = (0,0) + (1,0) = (1,0).$$
So, $L(f,P) \not\leq U(f,Q)$.

• $P \cup Q$ is not a partition.

Consider
$$f: [(0,0),(1,1)] \to \mathbb{R}^2$$
 defined by $f(x,y) = (y,x)$.
For $P = \{(0,0),(1,0),(1,1)\}$,
$$L(f,P) = (0,0)(1,0) + (0,1)(0,1) = (0,0) + (0,1) = (0,1).$$
For $Q = \{(0,0),(0,1),(1,1)\}$,
$$U(f,Q) = (1,0)(0,1) + (1,1)(1,0) = (0,0) + (1,0) = (1,0).$$
So, $L(f,P) \not\leq U(f,Q)$.

- $P \cup Q$ is not a partition.
- There is no partition R such that $L(f, P), L(f, Q) \leq L(f, R)$ and $U(f, P), U(f, Q) \geq U(f, R)$.

Partitions and bandwise functions

 If f is bandwise with partitions P and Q, there is a partition R such that

$$L(f,P), L(f,Q) \leq L(f,R)$$
 and $U(f,P), U(f,Q) \geq U(f,R)$.

• But we cannot take $R = P \cup Q$.

Partitions and bandwise functions

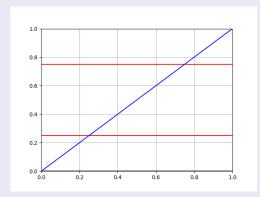
 If f is bandwise with partitions P and Q, there is a partition R such that

$$L(f, P), L(f, Q) \leq L(f, R)$$
 and $U(f, P), U(f, Q) \geq U(f, R)$.

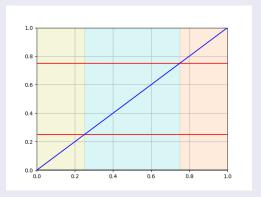
- But we cannot take $R = P \cup Q$.
- If $f:[0,b]\to E$ is bandwise, P a partition of [0,b] and $\mathbb P$ is a band projection, then

$$\mathbb{P}L(f,P) = L(f,\mathbb{P}P)$$
 and $\mathbb{P}U(f,P) = U(f,\mathbb{P}P)$.

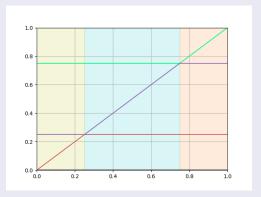
Example:



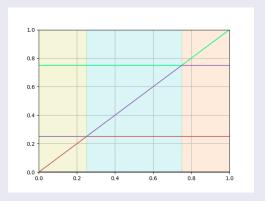
Example:



Example:

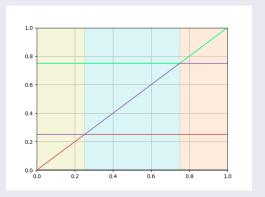


Example:



Since
$$\mathbb{P}(P) \subseteq \mathbb{P}(R)$$
, $L(f, \mathbb{P}(P)) \leq L(f, \mathbb{P}(R))$.

Example:



Since
$$\mathbb{P}(P) \subseteq \mathbb{P}(R)$$
, $L(f, \mathbb{P}(P)) \leq L(f, \mathbb{P}(R))$. Then,

$$\mathbb{P}(L(f,P)) = L(f,\mathbb{P}(P)) \le L(f,\mathbb{P}(R)) = \mathbb{P}(L(f,R)).$$

Integrability condition for bandwise functions

For a bandwise function f, $U(f, P) \downarrow U(f)$ and $L(f, P) \uparrow L(f)$.

Proposition:

Let $f:[a,b]\to E$ be bandwise. Then f is integrable if and only if there exists an $\mathcal{E}\searrow 0$ such that for every $\mathcal{E}\in \mathcal{E}$ there exists a partition P such that $U(f,P)-L(f,P)\leq \mathcal{E}$.

Proposition:

Let $f,g:[a,b]\to E$ be bounded and bandwise, and let $c\in E$. If f and g are integrable, then

0 f + g is integrable and

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx,$$

Proposition:

Let $f,g:[a,b]\to E$ be bounded and bandwise, and let $c\in E$. If f and g are integrable, then

0 f + g is integrable and

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx,$$

cf is integrable and

$$\int_a^b (cf)(x)dx = c \int_a^b f(x)dx,$$

Proposition:

Let $f,g:[a,b]\to E$ be bounded and bandwise, and let $c\in E$. If f and g are integrable, then

0 f + g is integrable and

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx,$$

cf is integrable and

$$\int_{a}^{b} (cf)(x)dx = c \int_{a}^{b} f(x)dx,$$

f if $f \leq g$, then $\int_a^b f(x)dx \leq \int_a^b g(x)dx$,

Proposition:

Let $f, g : [a, b] \to E$ be bounded and bandwise, and let $c \in E$. If f and g are integrable, then

0 f + g is integrable and

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx,$$

cf is integrable and

$$\int_a^b (cf)(x)dx = c \int_a^b f(x)dx,$$

- f if $f \leq g$, then $\int_a^b f(x)dx \leq \int_a^b g(x)dx$, and
- |f| is integrable and $\int_a^b f(x)dx \le \int_a^b |f(x)|dx$.

Uniform continuity

Definition:

A function $f : dom(f) \to E$ is **uniformly continuous** if whenever $x_{\alpha} - y_{\alpha} \to 0$ in dom(f) then $f(x_{\alpha}) - f(y_{\alpha}) \to 0$.

Uniform continuity

Definition:

A function $f : dom(f) \to E$ is **uniformly continuous** if whenever $x_{\alpha} - y_{\alpha} \to 0$ in dom(f) then $f(x_{\alpha}) - f(y_{\alpha}) \to 0$.

The swap function f(x,y)=(y,x) in \mathbb{R}^2 is uniformly continuous, but is not integrable on [(0,0),(1,1)].

Uniform continuity

Definition:

A function $f : dom(f) \to E$ is **uniformly continuous** if whenever $x_{\alpha} - y_{\alpha} \to 0$ in dom(f) then $f(x_{\alpha}) - f(y_{\alpha}) \to 0$.

The swap function f(x, y) = (y, x) in \mathbb{R}^2 is uniformly continuous, but is not integrable on [(0, 0), (1, 1)].

Proposition:

Let $f : [a, b] \to E$ be uniformly continuous and bandwise. Then f is integrable on [a, b].

A Fundamental Theorem of Calculus

Proposition:

Let $a \ll b$. Suppose $f: [a,b] \to E$ is uniformly continuous and bandwise. Then, $F(x) := \int_a^x f(t)dt$ is uniformly continuous on [a,b] and super differentiable on (a,b) with F'=f. Moreover, for any function $G: [a,b] \to E$ the following are equivalent:

- ① G is uniformly continuous on [a,b] and super differentiable on (a,b) with G'=f, and

References

W.A.J. Luxemburg and A.C. Zaanen.

Riesz Spaces I.

North-Holland Publishing Co., 1971.

M. Roelands and C. Schwanke.

Series and power series on universally complete complex vector lattices.

J. Math. Anal. Appl., 473(2):680-694, 2019.

M. Roelands and C. Schwanke.

Differentiable, holomorphic, and analytic functions on complex phi-algebras.

J. Math. Anal. Appl., 541(1):128671, 2025.

A.C. Zaanen.

 ${\it Introduction\ to\ Operator\ Theory\ in\ Riesz\ Spaces}.$

Springer, 1997.

The End

Thank you for your attention.