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Dedekind complete Φ-algebras

Throughout this talk, E will be a (real or complex) Dedekind
complete Φ-algebra.

Definition:
A real Φ-algebra is a real vector lattice F with an associative
multiplication which has a unit and that satisfies the usual algebra
properties as well as the following:

if x , y ≥ 0 then xy ≥ 0, and
if x ∧ y = 0, and z ≥ 0, then (xz) ∧ y = (zx) ∧ y = 0.

If F is Dedekind complete, it can be complexified to a complex
Φ-algebra E = F + iF , where the modulus is given by

|x + iy | = sup{(cos θ)x + (sin θ)y : θ ∈ [0, 2π]R}.
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Order convergence

Notation:
For E ⊆ E , we write E ↘ 0 to mean E has infimum 0, and E ↓ 0 if
E is also downwards directed

Definition:
A net (xα)α converges (in order) to x in E if there exists an
E ↘ 0 such that for every ε ∈ E there exists an α0 such that
|xα − x | ≤ ε holds for all α ≥ α0.
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Order continuity

Definition:
A function f : dom(f ) → E is (order) continuous at x if
whenever xα → x in dom(f ), then f (xα) → f (x) in E .

Proposition:

A function f : dom(f ) → E is continuous at x if and only if for all
∆ ↓ 0 there exists an E ↘ 0 such that for every ε ∈ E there exists a
δ ∈ ∆ satisfying

y ∈ dom(f ) and |y − x | ≤ δ =⇒ |f (y)− f (x)| ≤ ε.
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Intervals and neighbourhoods

Notation:
We write x ≪ y to mean y − x is a weak order unit of E .

Definition:
Let c , r ∈ E and r ≥ 0. We define

N(c , r) := {z ∈ E : |z − c | ≤ r}, and
N(c , r) := {z ∈ E : |z − c | ≪ r} (r ≫ 0).

If E is real, we also use interval notation: For a ≤ b, define

[a, b] := {x ∈ E : a ≤ x ≤ b}, and
(a, b) := {x ∈ E : a ≪ x ≪ b} (a ≪ b).
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Example: Intervals

Example:

In R2, the open intervals are the interiors of rectangles. The closed
intervals are rectangles, and horizontal and vertical line segments.
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Derivatives

Introduced by Roelands and Schwanke in [3].

Definition:
A function f : dom(f ) → E has derivative (resp. super
derivative) f ′(c) at c ∈ dom(f ) if

1 there exists an r ≫ 0 such that N(c , r) ⊆ dom(f ),

and
2 for every ∆ ↓ 0 there is an E ↘ 0 such that for all ε ∈ E, there

is a δ ∈ ∆ such that for all z ∈ N(c , r) (resp. z ∈ dom(f )),
|z − c | ≤ δ =⇒ |f (z)− f (c)− (z − c)f ′(c)| ≤ |z − c |ε.
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Properties of the derivative

Proposition:

Consider f : dom(f ) → E and g : dom(g) → E .
1 If f and g are (super) differentiable at c , then f + g is (super)

differentiable at c with (f + g)′(c) = f ′(c) + g ′(c).
2 If f and g are (super) differentiable at c , then fg is (super)

differentiable at c with (fg)′(c) = f ′(c)g(c) + f (c)g ′(c).

Proposition:

If f : dom(f ) → E is super differentiable at c then f is continuous
at c .
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Example

Does having a zero derivative imply a function is constant?

Example:

Consider f : (0, 1) → RN defined by

f (x) =

{
1, xn → 1

2

0, otherwise.

Let x ∈ (0, 1) and define r := ( 1
n ∧ xn ∧ (1 − xn))n∈N. Then

(x − r , x + r) ⊆ (0, 1).
For any y ∈ (x − r , x + r), |xn − yn| < 1

n for all n ∈ N so yn → 1
2 if

and only if xn → 1
2 .

Therefore, f is constant on (x − r , x + r) and f ′(x) = 0.
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Bandwise functions

Definition:
A function f : dom(f ) → E is bandwise if for any x , y ∈ dom(f )
and any band projection P, Px = Py implies Pf (x) = Pf (y).

Example:

A function f : dom(f ) → R2 is bandwise if and only if
f (x , y) = (g(x), h(y)) for some g , h : R → R.

Proposition:

If f : N(c, r) → E is super differentiable, then f is bandwise.
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Band decompositions of E

For any s, t ∈ R, we have that exactly one of the following holds:

s < t, s > t, or s = t.

Definition:
Let x , y ∈ E . We define

Bx<y := B(y−x)+ , Bx≤y := Bd
y<x , and Bx=y := Bx≤y ∩ By≤x .

Proposition:
For any x , y ∈ E ,

E = Bx<y ⊕ Bx≥y = Bx<y ⊕ Bx>y ⊕ Bx=y .
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Classical theorems

For these results, E is real.

The Boundedness Theorem
Let f : [a, b] → E be continuous and bandwise. Then f is bounded.

The Intermediate Value Theorem
Let f : [a, b] → E be continuous and bandwise, and let
y ∈ [f (a) ∧ f (b), f (a) ∨ f (b)]. Then there exists a c ∈ [a, b] such
that f (c) = y .

The Extreme Value Theorem
Let f : [a, b] → E be continuous and bandwise. Then there exist
c , d ∈ [a, b] such that f (c) ≤ f (x) ≤ f (d) for all x ∈ [a, b].
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Classical theorems (cont.)

The Mean Value Theorem
Let f : [a, b] → E be continuous on [a, b] and super differentiable
on (a, b). Then there exists an x0 ∈ (a, b) such that

(b − a)f ′(x0) = f (b)− f (a).

Proposition:

Let f : (a, b) → E be super differentiable with f ′ = 0. Then f is
constant.
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The Riemann integral in E

Consider a bounded function f : [a, b] → E , where [a, b] ⊆ E .

Notation:
For a given interval I ⊆ [a, b], we define

mI = inf
x∈I

f (x) and MI = sup
x∈I

f (x).

Definition:
A partition of [a, b] is a totally ordered, finite subset of [a, b], say
P = {a = x0 ≤ x1 ≤ · · · ≤ xn = b}. We define the lower and
upper sums of f with respect to P by

L(f ,P) :=
n∑

i=1

m[xi−1,xi ](xi − xi−1)

U(f ,P) :=
n∑

i=1

M[xi−1,xi ](xi − xi−1).
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The Riemann integral in E (cont.)

Definition:
The lower and upper integrals of f are defined by

L(f ) = sup{L(f ,P) : P is a partition of [a, b]}
U(f ) = inf{U(f ,P) : P is a partition of [a, b]}.

We say f is (Riemann) integrable on [a, b] if U(f ) = L(f ) and in
this case, we write ∫ b

a
f (x)dx := U(f ) = L(f ).
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Differences from the classical theory

Example:

Consider f : [(0, 0), (1, 1)] → R2 defined by f (x , y) = (y , x).

For P = {(0, 0), (1, 0), (1, 1)},

L(f ,P) = (0, 0)(1, 0) + (0, 1)(0, 1) = (0, 0) + (0, 1) = (0, 1).

For Q = {(0, 0), (0, 1), (1, 1)},

U(f ,Q) = (1, 0)(0, 1) + (1, 1)(1, 0) = (0, 0) + (1, 0) = (1, 0).

So, L(f ,P) ̸≤ U(f ,Q).

P ∪ Q is not a partition.
There is no partition R such that L(f ,P), L(f ,Q) ≤ L(f ,R)
and U(f ,P),U(f ,Q) ≥ U(f ,R).
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Partitions and bandwise functions

If f is bandwise with partitions P and Q, there is a partition R
such that

L(f ,P), L(f ,Q) ≤ L(f ,R) and U(f ,P),U(f ,Q) ≥ U(f ,R).

But we cannot take R = P ∪ Q.

If f : [0, b] → E is bandwise, P a partition of [0, b] and P is a
band projection, then

PL(f ,P) = L(f ,PP) and PU(f ,P) = U(f ,PP).
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Example

Example:

Consider [0, 1] in R[0,1].

Since P(P) ⊆ P(R), L(f ,P(P)) ≤ L(f ,P(R)). Then,

P(L(f ,P)) = L(f ,P(P)) ≤ L(f ,P(R)) = P(L(f ,R)).
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Integrability condition for bandwise functions

For a bandwise function f , U(f ,P) ↓ U(f ) and L(f ,P) ↑ L(f ).

Proposition:

Let f : [a, b] → E be bandwise. Then f is integrable if and only if
there exists an E ↘ 0 such that for every ε ∈ E there exists a
partition P such that U(f ,P)− L(f ,P) ≤ ε.
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Properties of the integral

Proposition:

Let f , g : [a, b] → E be bounded and bandwise, and let c ∈ E . If f
and g are integrable, then
(i) f + g is integrable and∫ b

a
(f + g)(x)dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx ,

(ii) cf is integrable and∫ b

a
(cf )(x)dx = c

∫ b

a
f (x)dx ,

(iii) if f ≤ g , then
∫ b
a f (x)dx ≤

∫ b
a g(x)dx , and

(iv) |f | is integrable and
∫ b
a f (x)dx ≤

∫ b
a |f (x)|dx .
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Uniform continuity

Definition:
A function f : dom(f ) → E is uniformly continuous if whenever
xα − yα → 0 in dom(f ) then f (xα)− f (yα) → 0.

The swap function f (x , y) = (y , x) in R2 is uniformly continuous,
but is not integrable on [(0, 0), (1, 1)].

Proposition:

Let f : [a, b] → E be uniformly continuous and bandwise. Then f is
integrable on [a, b].
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A Fundamental Theorem of Calculus

Proposition:

Let a ≪ b. Suppose f : [a, b] → E is uniformly continuous and
bandwise. Then, F (x) :=

∫ x
a f (t)dt is uniformly continuous on

[a, b] and super differentiable on (a, b) with F ′ = f . Moreover, for
any function G : [a, b] → E the following are equivalent:
(i) G is uniformly continuous on [a, b] and super differentiable on

(a, b) with G ′ = f , and
(ii)

∫ y
x f (t)dt = G (y)− G (x) for any x , y ∈ [a, b].
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The End

Thank you for your attention.
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