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Semigroup approach to delay equations

Let X be a Banach lattice and A : D(A) ⊂ X → X linear operator.

(ACP)

u̇(t) = Au(t), t ≥ 0,

u(0) = f ∈ X .

• (ACP) is well posed with solution u(t) = T (t)f ⇐⇒ A

generates a C0-semigroup (T (t))t≥0 on X (T (t)⇝ etA).

• (T (t))t≥0 is positive ⇐⇒ R(λ,A) ≥ 0 for λ big enough.

• If A generates a positive C0-semigroup and B ∈ L(X ) is

positive then A+ B generates a positive semigroup on X .
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Semigroup approach to delay equations

Abstract Delay Equation


u̇(t) = Au(t) +

∫ 0
−1 dη(s)u(s + t), t ≥ 0,

u(0) = f ∈ X ,

u(s) = φ(s), s ∈ [−1, 0].

Introducing the history function ut : [−1, 0] → X , ut(s) := u(t + s)

and the delay operator Pg :=
∫ 0
−1 dη(s)g(s) we get

(DE )


u̇(t) = Au(t) + Put , t ≥ 0,

u(0) = f ∈ X ,

u0 = φ ∈ Lp([−1, 0],X ).
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Semigroup approach to delay equations

U : t 7→ ( u(t)ut
) ∈ X × Lp([−1, 0],X )

AP :=

(
A P

0 d
ds

)
D(AP) :=

{
( f
φ ) ∈ D(A)×W 1,p([−1, 0],X ) : φ(0) = f

}
(DE ) ⇐⇒

U̇(t) = AU(t), t ≥ 0,

U(0) = ( f
φ ).

Proposition1

If A generates a positive C0-semigroup on X and P is positive then

A generates a positive C0-semigroup on X × Lp([−1, 0],X ).

1A. Bátkai, M.K.F., A. Rhandi, Positive operator semigroups: From finite to

infinite dimensions, 2017 (Ch. 15)
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Abstract boundary systems in a nutshell

(BS)


u̇(t) = Amu(t), t ≥ 0,

Gu(t) = Mu(t), t ≥ 0,

u(0) = f .

By control-theoretical approach á la Staffans-Weiss one can rewrite

Am = (A−1 + BG )|D(Am)

and obtain the integral solution

u(t) = T (t)f +

∫ t

0
T−1(t − s)Bu(s)ds︸ ︷︷ ︸

=:Φtu

∈ X−1.
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Abstract boundary systems in a nutshell

Assumptions

• Am closed, densely defined linear operator on X ,

G ,M : D(Am) → U linear operators

• A ⊂ Am, D(A) = ker(G ), generates a C0-semigroup

(T (t))t≥0 on X

• G : D(Am) → U is surjective ⇒ ∃Dλ :=
(
G| ker(λ−Am)

)−1

• B := (λ− A−1)Dλ ∈ L(U,X−1)

• C := M|D(A) : D(A) → U

• (Fτu)(t) := MΦtu, t ∈ [0, τ ]

• The triple operator (A,B,C ) is regular and IU − Fτ invertible

in Lp([0, τ ],U) for some τ > 0.
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Abstract boundary systems in a nutshell

Theorem
Under these asssumptions (BS) is well-posed.2 3

If the operators M,R(λ,A) and Dλ are positive for all λ > s(A)

and there exists λ0 > s(A) such that r(MDλ0) < 1 then the

solution semigroup is positive.4 5

2M. Adler, M. Bombieri, K.-J. Engel, On Perturbations of Generators of

C0-Semigroups, Abstract and Applied Analysis, Article ID 213020, 2014.
3S. Hadd, R. Manzo, A. Rhandi, Unbounded perturbations of the generator

domain Disc. Cont. Dyn. Sys. A, 35 (2015), 703–723.
4A. Boulouz, H. Bounit and S. Hadd, Feedback theory approach to positivity

and stability of evolution equations, Systems & Control Lett. 161, (2022)

105167
5A. Barbieri, K.-J. Engel, On Structured Perturbations of Positive Semigroups.

arXiv:2405.18947
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Abstract boundary delay systems

(BDS)


u̇(t) = Amu(t) + Put , t ≥ 0,

Gu(t) = Mu(t) + Lut , t ≥ 0,

u(0) = f , u(s) = φ(s), s ∈ [−1, 0].

Our path

Take AP,L:=

(
Am P

0 d
ds

)
with domain consisting of

( f
φ ) ∈ D(Am)×W 1,p([−1, 0],X ) : (G −M)f = Lφ, f = φ(0)

and follow the steps needed to prove the well-posedness of (BS).
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Abstract boundary delay systems

Main Theorem6

If the operators M, L,P,R(λ,A) and Dλ are positive for all

λ > s(A) and there exists λ0 > s(A) such that r(MDλ0) < 1 then

the semigroup (TP,L(t))t≥0 is positive.

6A. Bátkai, M.K.F, A. Rhandi, Abstract boundary delay systems and

application to network flow, arXiv:2503.08809
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Example: Delayed transport in metric graphs

v1 v2

v3 v4

e1

2
3

e2 1
3

e31

e4

1

e5 1

• Consider a transport equation

• on the edges of a finite, connected metric

graph (ej ≡ [0, 1], j = 1, . . . ,m)

• in each vertex vi the incoming material is

distributed into the outgoing edges ej

according to weights 0 ≤ ωij ≤ 1

• the mass is conserved:
∑

inflow =
∑

outflow

• the flow is delayed along the edges as well as

in the vertices.

11
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Example: Delayed transport in metric graphs

Rewrite as IBVP
d
dt uj(x , t) =

d
dx uj(x , t), t ≥ 0, x ∈ (0, 1),

uj(1, t) =
m∑

k=1

Bjkuk(0, t), t ≥ 0,

uj(x , 0) = fj(x), x ∈ (0, 1).

• uj(x , t) is the mass distribution along edge ej

• B is the weighted adjacency matrix of the line graph

• f (x) is the initial mass distribution

12
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Example: Delayed transport in metric graphs

IBVP with delays

d
dt uj(x , t) =

d
dx uj(x , t) +

(∫ 0
−1 dηj(s)uj(·, s + t)

)
(x), t ≥ 0, x ∈ (0, 1),

uj(1, t) =
∑m

k=1 Bjk

(
uk(0, t) +

∫ 0
−1 dηk(s)uk(·, s + t)

)
, t ≥ 0,

uj(x , 0) = fj(x), x ∈ (0, 1),

uj(x , τ) = gj(x , τ), x ∈ (0, 1), τ ∈ [−1, 0].

Delay operators

Pkgk :=

∫ 0

−1
dηk(s)gk(s) and ℓkgk :=

∫ 0

−1
dηk(s)gk(s)

13
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)
(x), t ≥ 0, x ∈ (0, 1),

uj(1, t) =
∑m

k=1 Bjk

(
uk(0, t) +

∫ 0
−1 dηk(s)uk(·, s + t)

)
, t ≥ 0,

uj(x , 0) = fj(x), x ∈ (0, 1),

uj(x , τ) = gj(x , τ), x ∈ (0, 1), τ ∈ [−1, 0].

Delay operators

Pkgk :=

∫ 0

−1
dηk(s)gk(s) and ℓkgk :=

∫ 0

−1
dηk(s)gk(s)
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Example: Delayed transport in metric graphs

Spaces and operators

• X := Lp([0, 1],Cm), U = Cm

• Am := d
dx , D(Am) := W 1,p([0, 1],Cm)

• ℓ := diag(ℓk) : W
1,p([−1, 0],X ) → X

• P := diag(Pk) : W
1,p([−1, 0],X ) → Cm

• Gf = f (1), Mf = Bf (0), and L = Bℓ

Corollary
The network system with delays is well-posed. The solutions are

positive if the initial functions are positive.
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Example: Delayed transport in metric graphs

Some steps of the proof

• G is surjective and A with D(A) = {f : f (1) = 0} generates

the left translation semigroup T (·) on X .

• Dirichlet operator: (Dλa)(x) = eλ(x−1)a, a ∈ Cm, x ∈ [0, 1]

• (A,B,C ) is regular . . .

•

(Ftu)(t) =

Bu(t − 1), if t ≥ 1,

0, otherwise

and ICm − Ft is invertible for t < 1.

• Finaly, we obtain positivity since MDλ = e−λB so

r(MDλ) < 1 for all λ > 0.
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Thank you for your attention!

15


	Semigroup approach to delay equations
	Abstract boundary systems in a nutshell
	Abstract boundary delay systems
	Example: Delayed transport in metric graphs

