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Let X be a Banach lattice and A: D(A) C X — X linear operator.

u(t) = Au(t), t=>0,

(42) u(0) = f € X.

o (ACP) is well posed with solution u(t) = T(t)f <— A
generates a Co-semigroup (T(t)),>o on X (T(t) ~ etA).

® (T(t));>o is positive <= R(A, A) >0 for A big enough.

e If A generates a positive Co-semigroup and B € L(X) is
positive then A + B generates a positive semigroup on X.



Semigroup approach to delay equations

Abstract Delay Equation

a(t) = Au(t) + [°, dn(s)u(s +t), t>0,
u(0) =17 € X,
u(s) = ¢(s), s € [-1,0].



Semigroup approach to delay equations

Abstract Delay Equation

a(t) = Au(t) + [°, dn(s)u(s +t), t>0,
u(0) =17 € X,
u(s) = ¢(s), s € [-1,0].

Introducing the history function us: [—1,0] — X, us(s) := u(t+s)
and the delay operator Pg := ff)l dn(s)g(s) we get



Semigroup approach to delay equations

Abstract Delay Equation

a(t) = Au(t) + [°, dn(s)u(s +t), t>0,
u(0) =17 € X,
u(s) = ¢(s), s € [-1,0].

Introducing the history function us: [—1,0] — X, us(s) := u(t+s)
and the delay operator Pg := ff)l dn(s)g(s) we get



Semigroup approach to delay equations

Abstract Delay Equation

a(t) = Au(t) + [°, dn(s)u(s +t), t>0,
u(0) =17 € X,
u(s) = ¢(s), s € [-1,0].

Introducing the history function us: [—1,0] — X, us(s) := u(t+s)
and the delay operator Pg := ff)l dn(s)g(s) we get

u(t) = Au(t) + Pu, t >0,
(DE) S u(0) = f € X,
up = ¢ € LP([-1,0], X).



Semigroup approach to delay equations

Abstract Delay Equation

a(t) = Au(t) + [°, dn(s)u(s +t), t>0,
u(0) =17 € X,
u(s) = ¢(s), s € [-1,0].

Introducing the history function us: [—1,0] — X, us(s) := u(t+s)
and the delay operator Pg := ff)l dn(s)g(s) we get
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u(t)y e X x LP([~1,0], X)

Es>

U:t—

— {(£) ) x WHP([=1,0], X) : ©(0) = £}
(DE) < U(t) = AU(t), t=>0,
U() = (f)

Proposition®
If A generates a positive Co-semigroup on X and P is positive then

A generates a positive Cp-semigroup on X x LP([—1,0], X).

LA, Bstkai, M.K.F., A. Rhandi, Positive operator semigroups: From finite to
infinite dimensions, 2017 (Ch. 15)
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Abstract boundary systems in a nutshell

u(t) = Anu(t), t>0,
(BS) § Gu(t) = Mu(t), t>0,
u(0) = f.

By control-theoretical approach a la Staffans-Weiss one can rewrite
Am = (A_l aF BG)\D(A,,,)

and obtain the integral solution

u(t) = T(E)F + /Ot T 1(t — s)Bu(s)ds € X_1.

=:dsu
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Abstract boundary systems in a nutshell

Assumptions

e Ap, closed, densely defined linear operator on X,
G,M: D(An,) — U linear operators

A C Am, D(A) = ker(G), generates a Cy-semigroup
(T(t))e=0 on X

G: D(Am) — U is surjective = 3Dy := (Gluer(r-an))
B:=(\—A_1)Dy € L(U,X_1)

C := M|pay: D(A) = U

(Fru)(t) := M®u, t € [0, 7]

The triple operator (A, B, C) is regular and Iy — F; invertible
in LP([0, 7], U) for some 7 > 0.
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Theorem

Under these asssumptions (BS) is well-posed.? 3

If the operators M, R(\, A) and D) are positive for all A > s(A)
and there exists A\g > s(A) such that r(MD,,) < 1 then the

solution semigroup is positive.* °

2M. Adler, M. Bombieri, K.-J. Engel, On Perturbations of Generators of
Co-Semigroups, Abstract and Applied Analysis, Article ID 213020, 2014.

3S. Hadd, R. Manzo, A. Rhandi, Unbounded perturbations of the generator
domain Disc. Cont. Dyn. Sys. A, 35 (2015), 703-723.

“A. Boulouz, H. Bounit and S. Hadd, Feedback theory approach to positivity
and stability of evolution equations, Systems & Control Lett. 161, (2022)
105167

SA. Barbieri, K.-J. Engel, On Structured Perturbations of Positive Semigroups.
arXiv:2405.18947
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Abstract boundary delay systems

u(t) = Amu(t) + Puy, t>0,
(BDS) § Gu(t) = Mu(t) + Lus, t>0,
u(0) =f, u(s) = ¢(s), se[-1,0].

Our path

d
0

(£) € D(Am) x WHP([-1,0], X) : (G — M)f = Ly, f = ¢(0)

A P
Take Ap ;:= ( m ) with domain consisting of

and follow the steps needed to prove the well-posedness of (BS).



Abstract boundary delay systems

Main Theorem®
If the operators M, L, P, R(\, A) and D, are positive for all

A > s(A) and there exists A\g > s(A) such that r(MD, ) < 1 then

the semigroup (7p,.(t))¢>0 is positive.

®A. Bétkai, M.K.F, A. Rhandi, Abstract boundary delay systems and

application to network flow, arXiv:2503.08809
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Example: Delayed transport in metric graphs

Consider a transport equation

on the edges of a finite, connected metric
graph (¢, =[0,1], j=1,...,m)

in each vertex v; the incoming material is
distributed into the outgoing edges ¢;
according to weights 0 < <1

the mass is conserved: ) inflow = ) outflow

the flow is delayed along the edges as well as
in the vertices.

11
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Example: Delayed transport in metric graphs

Rewrite as IBVP

%uj(x, t) = %uj(x, t), t>0, xe(0,1),
UJ'(].7 t) = ZBjkuk(07 t), t >0,
k=1

uj(x,0) = fi(x), x € (0,1).

e uj(x,t) is the mass distribution along edge ¢;
e B is the weighted adjacency matrix of the line graph

e f(x) is the initial mass distribution

12
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IBVP with delays

Luj(x,t) = Luj(x, 1) + ([ d()ui(o 5+ 0)) (x), €20, x € (0,1),
(1, t) = i Bi (uk<o, )+ O dn(S)ur(-s+ 1)), €20,
ui(x,0) = fi(x), xe€(0,1),

ui(x,7) = gji(x,7), x€(0,1), 7 € [-1,0].
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Example: Delayed transport in metric graphs

IBVP with delays

Luj(x,t) = Luj(x, 1) + ([ d()ui(o 5+ 0)) (x), €20, x € (0,1),
(1, t) = i Bi (uk<o, )+ O dn(S)ur(-s+ 1)), €20,
ui(x,0) = fi(x), xe€(0,1),

ui(x,7) = gji(x,7), x€(0,1), 7 € [-1,0].

Delay operators

0 0
Prgk 1—/ dnk(s)gx(s) and  lkgk = /_ldﬁk(s)gk(s)

-1
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Example: Delayed transport in metric graphs

Spaces and operators

e X :=LP([0,1],C™), U=C"

o Api= L5, D(Ap) := Whr([0,1],C™)
(= diag(lx): WHP([-1,0],X) — X
P := diag(Py): W1P([-1,0],X) — C™
Gf = f(1), Mf = Bf(0), and L = B/
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Example: Delayed transport in metric graphs

Spaces and operators
e X :=LP([0,1],C™), U=C"
o Ami= 9 D(An) = WP(0,1],C™)
o (:=diag(ty): WP([-1,0], X) — X
o P:=diag(Px): W'P([-1,0],X) —» C™
o Gf =f(1), Mf =Bf(0), and L =B/

Corollary
The network system with delays is well-posed. The solutions are

positive if the initial functions are positive.

14
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Example: Delayed transport in metric graphs

Some steps of the proof

e G is surjective and A with D(A) = {f : f(1) = 0} generates
the left translation semigroup T(:) on X.

Dirichlet operator: (Dya)(x) = e**~Ya, a e C™, x € [0,1]
(A, B, C) is regular . ..

(Fuu)(t) = Bu(t—1), ift>1,

0, otherwise

and Icm — F; is invertible for t < 1.

Finaly, we obtain positivity since MDy = e *B so
r(MDy) < 1 for all A > 0. O

ii5)



Thank you for your attention!
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