Positivity of boundary delay systems

Positivity XII 2–7 June, 2025, Hammamet, Tunisia

Marjeta Kramar Fijavž

Overview

Semigroup approach to delay equations

Abstract boundary systems in a nutshell

Abstract boundary delay systems

equations

Semigroup approach to delay

Let X be a Banach lattice and $A \colon D(A) \subset X \to X$ linear operator.

$$(ACP) egin{cases} \dot{u}(t) = Au(t), & t \geq 0, \ u(0) = f \in X. \end{cases}$$

• (ACP) is well posed with solution $u(t) = T(t)f \iff A$ generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on $X(T(t) \rightsquigarrow e^{tA})$.

Let X be a Banach lattice and $A \colon D(A) \subset X \to X$ linear operator.

$$(ACP) egin{cases} \dot{u}(t) = Au(t), & t \geq 0, \ u(0) = f \in X. \end{cases}$$

- (ACP) is well posed with solution $u(t) = T(t)f \iff A$ generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on $X(T(t) \leadsto e^{tA})$.
- $(T(t))_{t\geq 0}$ is positive $\iff R(\lambda,A)\geq 0$ for λ big enough.

Let X be a Banach lattice and $A: D(A) \subset X \to X$ linear operator.

$$(ACP) egin{cases} \dot{u}(t) = Au(t), & t \geq 0, \ u(0) = f \in X. \end{cases}$$

- (ACP) is well posed with solution $u(t) = T(t)f \iff A$ generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on $X(T(t) \leadsto e^{tA})$.
- $(T(t))_{t\geq 0}$ is positive $\iff R(\lambda,A)\geq 0$ for λ big enough.
- If A generates a positive C_0 -semigroup and $B \in \mathcal{L}(X)$ is positive then A + B generates a positive semigroup on X.

Abstract Delay Equation

$$\begin{cases} \dot{u}(t) = Au(t) + \int_{-1}^{0} d\eta(s)u(s+t), & t \ge 0, \\ u(0) = f \in X, \\ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Abstract Delay Equation

$$\begin{cases} \dot{u}(t) = Au(t) + \int_{-1}^{0} d\eta(s)u(s+t), & t \ge 0, \\ u(0) = f \in X, \\ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Introducing the history function $u_t\colon [-1,0]\to X$, $u_t(s):=u(t+s)$ and the delay operator $Pg:=\int_{-1}^0 d\eta(s)g(s)$ we get

4

Abstract Delay Equation

$$\begin{cases} \dot{u}(t) = Au(t) + \int_{-1}^{0} d\eta(s)u(s+t), & t \ge 0, \\ u(0) = f \in X, \\ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Introducing the history function $u_t\colon [-1,0]\to X$, $u_t(s):=u(t+s)$ and the delay operator $Pg:=\int_{-1}^0 d\eta(s)g(s)$ we get

4

Abstract Delay Equation

$$\begin{cases} \dot{u}(t) = Au(t) + \int_{-1}^{0} d\eta(s)u(s+t), & t \ge 0, \\ u(0) = f \in X, \\ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Introducing the history function $u_t \colon [-1,0] \to X$, $u_t(s) := u(t+s)$ and the delay operator $Pg := \int_{-1}^0 d\eta(s)g(s)$ we get

$$(DE) \begin{cases} \dot{u}(t) = Au(t) + Pu_t, \ t \ge 0, \\ u(0) = f \in X, \\ u_0 = \varphi \in L^p([-1, 0], X). \end{cases}$$

Abstract Delay Equation

$$\begin{cases} \dot{u}(t) = Au(t) + \int_{-1}^{0} d\eta(s)u(s+t), & t \ge 0, \\ u(0) = f \in X, \\ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Introducing the history function $u_t \colon [-1,0] \to X$, $u_t(s) := u(t+s)$ and the delay operator $Pg := \int_{-1}^0 d\eta(s)g(s)$ we get

(DE)
$$\begin{cases} \dot{u}(t) = Au(t) + Pu_t, \ t \ge 0, \\ u(0) = f \in X, \\ u_0 = \varphi \in L^p([-1, 0], X). \end{cases}$$

$$\mathcal{U}: t \mapsto \left(\begin{smallmatrix} u(t) \\ u_t \end{smallmatrix}\right) \in X \times L^p([-1,0],X)$$

$$\mathcal{A}_P := \begin{pmatrix} A & P \\ 0 & \frac{d}{ds} \end{pmatrix}$$

$$D(\mathcal{A}_P) := \left\{ \left(\begin{smallmatrix} f \\ \varphi \end{smallmatrix}\right) \in D(A) \times W^{1,p}([-1,0],X) : \varphi(0) = f \right\}$$

$$(DE) \iff \begin{cases} \dot{\mathcal{U}}(t) = \mathcal{A}\mathcal{U}(t), & t \geq 0, \\ \mathcal{U}(0) = \left(\begin{smallmatrix} f \\ \varphi \end{smallmatrix}\right).$$

¹A. Bátkai, M.K.F., A. Rhandi, *Positive operator semigroups: From finite to infinite dimensions*, 2017 (Ch. 15)

$$\mathcal{U} \colon t \mapsto \left(\begin{smallmatrix} u(t) \\ u_t \end{smallmatrix} \right) \in X \times L^p([-1,0],X)$$

$$\mathcal{A}_P := \begin{pmatrix} A & P \\ 0 & \frac{d}{ds} \end{pmatrix}$$

$$D(\mathcal{A}_P) := \left\{ \left(\begin{smallmatrix} f \\ \varphi \end{smallmatrix} \right) \in D(A) \times W^{1,p}([-1,0],X) : \ \varphi(0) = f \right\}$$

$$(DE) \iff \begin{cases} \dot{\mathcal{U}}(t) = \mathcal{A}\mathcal{U}(t), & t \geq 0, \\ \mathcal{U}(0) = \left(\begin{smallmatrix} f \\ \varphi \end{smallmatrix} \right).$$

Proposition¹

If A generates a positive C_0 -semigroup on X and P is positive then \mathcal{A} generates a positive C_0 -semigroup on $X \times L^p([-1,0],X)$.

¹A. Bátkai, M.K.F., A. Rhandi, *Positive operator semigroups: From finite to infinite dimensions*, 2017 (Ch. 15)

Abstract boundary systems in a

nutshell

$$(BS) \begin{cases} \dot{u}(t) = A_m u(t), & t \ge 0, \\ Gu(t) = Mu(t), & t \ge 0, \\ u(0) = f. \end{cases}$$

$$(BS) \begin{cases} \dot{u}(t) = A_m u(t), & t \ge 0, \\ Gu(t) = Mu(t), & t \ge 0, \\ u(0) = f. \end{cases}$$

By control-theoretical approach á la Staffans-Weiss one can rewrite

$$A_m = (A_{-1} + BG)_{|D(A_m)|}$$

and obtain the integral solution

$$u(t) = T(t)f + \underbrace{\int_0^t T_{-1}(t-s)Bu(s)ds}_{=:\Phi_t u} \in X_{-1}.$$

Assumptions

• A_m closed, densely defined linear operator on X, $G, M: D(A_m) \to U$ linear operators

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \rightarrow U$ linear operators
- $A\subset A_m,\ D(A)=\ker(G),\ {
 m generates}\ {
 m a}\ C_0$ -semigroup $(T(t))_{t\geq 0}$ on X

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \rightarrow U$ linear operators
- $A \subset A_m$, $D(A) = \ker(G)$, generates a C_0 -semigroup $(T(t))_{t \geq 0}$ on X
- $G: D(A_m) \to U$ is surjective $\Rightarrow \exists D_{\lambda} := (G_{|\ker(\lambda A_m)})^{-1}$

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \to U$ linear operators
- $A\subset A_m$, $D(A)=\ker(G)$, generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on X
- $G: D(A_m) \to U$ is surjective $\Rightarrow \exists D_{\lambda} := (G_{|\ker(\lambda A_m)})^{-1}$
- $B := (\lambda A_{-1})D_{\lambda} \in \mathcal{L}(U, X_{-1})$

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \rightarrow U$ linear operators
- $A\subset A_m$, $D(A)=\ker(G)$, generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on X
- $G: D(A_m) \to U$ is surjective $\Rightarrow \exists D_{\lambda} := (G_{|\ker(\lambda A_m)})^{-1}$
- $B := (\lambda A_{-1})D_{\lambda} \in \mathcal{L}(U, X_{-1})$
- $C := M|_{D(A)} \colon D(A) \to U$

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \rightarrow U$ linear operators
- $A\subset A_m$, $D(A)=\ker(G)$, generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on X
- $G: D(A_m) \to U$ is surjective $\Rightarrow \exists D_{\lambda} := (G_{|\ker(\lambda A_m)})^{-1}$
- $B := (\lambda A_{-1})D_{\lambda} \in \mathcal{L}(U, X_{-1})$
- $C := M|_{D(A)} \colon D(A) \to U$
- $(F_{\tau}u)(t) := M\Phi_t u, t \in [0, \tau]$

- A_m closed, densely defined linear operator on X, $G, M: D(A_m) \rightarrow U$ linear operators
- $A\subset A_m$, $D(A)=\ker(G)$, generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on X
- $G: D(A_m) \to U$ is surjective $\Rightarrow \exists D_{\lambda} := (G_{|\ker(\lambda A_m)})^{-1}$
- $B := (\lambda A_{-1})D_{\lambda} \in \mathcal{L}(U, X_{-1})$
- $C := M|_{D(A)} : D(A) \rightarrow U$
- $(F_{\tau}u)(t) := M\Phi_t u, t \in [0, \tau]$
- The triple operator (A, B, C) is regular and $I_U F_{\tau}$ invertible in $L^p([0, \tau], U)$ for some $\tau > 0$.

Theorem

Under these asssumptions (BS) is well-posed.²

If the operators $M, R(\lambda, A)$ and D_{λ} are positive for all $\lambda > s(A)$ and there exists $\lambda_0 > s(A)$ such that $r(MD_{\lambda_0}) < 1$ then the solution semigroup is *positive*.⁴

 $^{^2}$ M. Adler, M. Bombieri, K.-J. Engel, *On Perturbations of Generators of C*₀-*Semigroups*, Abstract and Applied Analysis, Article ID 213020, 2014.

³S. Hadd, R. Manzo, A. Rhandi, *Unbounded perturbations of the generator domain* Disc. Cont. Dyn. Sys. A, 35 (2015), 703–723.

⁴A. Boulouz, H. Bounit and S. Hadd, Feedback theory approach to positivity and stability of evolution equations, Systems & Control Lett. 161, (2022) 105167

⁵A. Barbieri, K.-J. Engel, On Structured Perturbations of Positive Semigroups. arXiv:2405.18947

$$(BDS) \begin{cases} \dot{u}(t) = A_m u(t) + P u_t, & t \ge 0, \\ G u(t) = M u(t) + L u_t, & t \ge 0, \\ u(0) = f, \ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

$$(BDS) \begin{cases} \dot{u}(t) = A_m u(t) + P u_t, & t \ge 0, \\ G u(t) = M u(t) + L u_t, & t \ge 0, \\ u(0) = f, \ u(s) = \varphi(s), & s \in [-1, 0]. \end{cases}$$

Our path

Take
$$A_{P,L} := \begin{pmatrix} A_m & P \\ 0 & \frac{d}{ds} \end{pmatrix}$$
 with domain consisting of $\binom{f}{\varphi} \in D(A_m) \times W^{1,p}([-1,0],X) : (G-M)f = L\varphi, \ f = \varphi(0)$

and follow the steps needed to prove the well-posedness of (BS).

Main Theorem⁶

If the operators $M, L, P, R(\lambda, A)$ and D_{λ} are positive for all $\lambda > s(A)$ and there exists $\lambda_0 > s(A)$ such that $r(MD_{\lambda_0}) < 1$ then the semigroup $(\mathcal{T}_{P,L}(t))_{t \geq 0}$ is *positive*.

⁶A. Bátkai, M.K.F, A. Rhandi, *Abstract boundary delay systems and application to network flow*, arXiv:2503.08809

Example: Delayed transport in

metric graphs

• Consider a transport equation

- Consider a transport equation
- on the edges of a finite, connected *metric* graph $(e_i \equiv [0, 1], j = 1, ..., m)$

- Consider a transport equation
- on the edges of a finite, connected *metric* graph $(e_j \equiv [0,1], j=1,\ldots,m)$
- in each vertex v_i the incoming material is distributed into the outgoing edges e_j according to weights $0 \le \omega_{ij} \le 1$

- Consider a transport equation
- on the edges of a finite, connected *metric* graph $(e_j \equiv [0, 1], j = 1, ..., m)$
- in each vertex v_i the incoming material is distributed into the outgoing edges e_j according to weights $0 \le \omega_{ij} \le 1$
- ullet the mass is conserved: $\sum inflow = \sum outflow$

- Consider a transport equation
- on the edges of a finite, connected *metric* graph $(e_j \equiv [0,1], j=1,\ldots,m)$
- in each vertex v_i the incoming material is distributed into the outgoing edges e_j according to weights $0 \le \omega_{ij} \le 1$
- ullet the mass is conserved: $\sum inflow = \sum outflow$
- the flow is delayed along the edges as well as in the vertices.

Rewrite as IBVP

$$egin{cases} rac{d}{dt}u_j(x,t) = rac{d}{dx}u_j(x,t), & t \geq 0, \ x \in (0,1), \ u_j(1,t) = \sum_{k=1}^m \mathbb{B}_{jk}u_k(0,t), & t \geq 0, \ u_j(x,0) = f_j(x), & x \in (0,1). \end{cases}$$

Rewrite as IBVP

$$egin{cases} rac{d}{dt}u_j(x,t) = rac{d}{dx}u_j(x,t), & t \geq 0, \ x \in (0,1), \ u_j(1,t) = \sum_{k=1}^m \mathbb{B}_{jk}u_k(0,t), & t \geq 0, \ u_j(x,0) = f_j(x), & x \in (0,1). \end{cases}$$

Rewrite as IBVP

$$\begin{cases} \frac{d}{dt}u_{j}(x,t) = \frac{d}{dx}u_{j}(x,t), & t \geq 0, \ x \in (0,1), \\ u_{j}(1,t) = \sum_{k=1}^{m} \mathbb{B}_{jk}u_{k}(0,t), & t \geq 0, \\ u_{j}(x,0) = f_{j}(x), & x \in (0,1). \end{cases}$$

• $u_j(x,t)$ is the mass distribution along edge e_j

Rewrite as IBVP

$$\begin{cases} \frac{d}{dt}u_{j}(x,t) = \frac{d}{dx}u_{j}(x,t), & t \geq 0, \ x \in (0,1), \\ u_{j}(1,t) = \sum_{k=1}^{m} \mathbb{B}_{jk}u_{k}(0,t), & t \geq 0, \\ u_{j}(x,0) = f_{j}(x), & x \in (0,1). \end{cases}$$

- $u_j(x,t)$ is the mass distribution along edge e_j
- ullet is the weighted adjacency matrix of the line graph

Rewrite as IBVP

$$\begin{cases} \frac{d}{dt}u_{j}(x,t) = \frac{d}{dx}u_{j}(x,t), & t \geq 0, \ x \in (0,1), \\ u_{j}(1,t) = \sum_{k=1}^{m} \mathbb{B}_{jk}u_{k}(0,t), & t \geq 0, \\ u_{j}(x,0) = f_{j}(x), & x \in (0,1). \end{cases}$$

- $u_j(x,t)$ is the mass distribution along edge e_j
- ullet ${\mathbb B}$ is the weighted adjacency matrix of the line graph
- f(x) is the initial mass distribution

IBVP with delays

$$\begin{cases} \frac{d}{dt}u_{j}(x,t) = \frac{d}{dx}u_{j}(x,t) + \left(\int_{-1}^{0}d\eta_{j}(s)u_{j}(\cdot,s+t)\right)(x), & t \geq 0, \ x \in (0,1), \\ u_{j}(1,t) = \sum_{k=1}^{m} \mathbb{B}_{jk}\left(u_{k}(0,t) + \int_{-1}^{0}d\eta_{k}(s)u_{k}(\cdot,s+t)\right), & t \geq 0, \\ u_{j}(x,0) = f_{j}(x), & x \in (0,1), \\ u_{j}(x,\tau) = g_{j}(x,\tau), & x \in (0,1), \ \tau \in [-1,0]. \end{cases}$$

IBVP with delays

$$\begin{cases} \frac{d}{dt}u_{j}(x,t) = \frac{d}{dx}u_{j}(x,t) + \left(\int_{-1}^{0}d\eta_{j}(s)u_{j}(\cdot,s+t)\right)(x), & t \geq 0, \ x \in (0,1), \\ u_{j}(1,t) = \sum_{k=1}^{m} \mathbb{B}_{jk}\left(u_{k}(0,t) + \int_{-1}^{0}d\eta_{k}(s)u_{k}(\cdot,s+t)\right), & t \geq 0, \\ u_{j}(x,0) = f_{j}(x), & x \in (0,1), \\ u_{j}(x,\tau) = g_{j}(x,\tau), & x \in (0,1), \ \tau \in [-1,0]. \end{cases}$$

Delay operators

$$P_k g_k := \int_{-1}^0 d\eta_k(s) g_k(s) \quad ext{ and } \quad \ell_k g_k := \int_{-1}^0 d\eta_k(s) g_k(s)$$

•
$$X := L^p([0,1], \mathbb{C}^m)$$
, $U = \mathbb{C}^m$

- $X := L^p([0,1], \mathbb{C}^m), U = \mathbb{C}^m$
- $A_m := \frac{d}{dx}$, $D(A_m) := W^{1,p}([0,1],\mathbb{C}^m)$

- $X := L^p([0,1], \mathbb{C}^m), \ U = \mathbb{C}^m$
- $A_m := \frac{d}{dx}$, $D(A_m) := W^{1,p}([0,1],\mathbb{C}^m)$
- $\ell := \operatorname{diag}(\ell_k) \colon W^{1,p}([-1,0],X) \to X$

- $X := L^p([0,1], \mathbb{C}^m), U = \mathbb{C}^m$
- $A_m := \frac{d}{dx}$, $D(A_m) := W^{1,p}([0,1],\mathbb{C}^m)$
- $\ell := \operatorname{diag}(\ell_k) \colon W^{1,p}([-1,0],X) \to X$
- $\bullet \ P := \mathrm{diag}(P_k) \colon W^{1,p}([-1,0],X) \to \mathbb{C}^m$

- $X := L^p([0,1], \mathbb{C}^m), U = \mathbb{C}^m$
- $A_m := \frac{d}{dx}$, $D(A_m) := W^{1,p}([0,1],\mathbb{C}^m)$
- $\ell := \operatorname{diag}(\ell_k) : W^{1,p}([-1,0],X) \to X$
- $P := \operatorname{diag}(P_k) \colon W^{1,p}([-1,0],X) \to \mathbb{C}^m$
- Gf = f(1), $Mf = \mathbb{B}f(0)$, and $L = \mathbb{B}\ell$

Spaces and operators

- $X := L^p([0,1], \mathbb{C}^m), U = \mathbb{C}^m$
- $A_m := \frac{d}{dx}$, $D(A_m) := W^{1,p}([0,1],\mathbb{C}^m)$
- $\ell := \operatorname{diag}(\ell_k) : W^{1,p}([-1,0],X) \to X$
- $P := \operatorname{diag}(P_k) : W^{1,p}([-1,0],X) \to \mathbb{C}^m$
- Gf = f(1), $Mf = \mathbb{B}f(0)$, and $L = \mathbb{B}\ell$

Corollary

The network system with delays is well-posed. The solutions are positive if the initial functions are positive.

Some steps of the proof

Some steps of the proof

• G is surjective and A with $D(A) = \{f : f(1) = 0\}$ generates the left translation semigroup $T(\cdot)$ on X.

Some steps of the proof

- G is surjective and A with $D(A) = \{f : f(1) = 0\}$ generates the left translation semigroup $T(\cdot)$ on X.
- Dirichlet operator: $(D_{\lambda}a)(x) = e^{\lambda(x-1)}a$, $a \in \mathbb{C}^m$, $x \in [0,1]$

Some steps of the proof

- G is surjective and A with $D(A) = \{f : f(1) = 0\}$ generates the left translation semigroup $T(\cdot)$ on X.
- Dirichlet operator: $(D_{\lambda}a)(x) = e^{\lambda(x-1)}a$, $a \in \mathbb{C}^m$, $x \in [0,1]$
- (*A*, *B*, *C*) is regular . . .

Some steps of the proof

- G is surjective and A with $D(A) = \{f : f(1) = 0\}$ generates the left translation semigroup $T(\cdot)$ on X.
- Dirichlet operator: $(D_{\lambda}a)(x) = e^{\lambda(x-1)}a$, $a \in \mathbb{C}^m$, $x \in [0,1]$
- (*A*, *B*, *C*) is regular . . .

•

$$(F_t u)(t) = egin{cases} \mathbb{B} u(t-1), & ext{if } t \geq 1, \ 0, & ext{otherwise} \end{cases}$$

and $I_{\mathbb{C}^m} - F_t$ is invertible for t < 1.

Some steps of the proof

- G is surjective and A with $D(A) = \{f : f(1) = 0\}$ generates the left translation semigroup $T(\cdot)$ on X.
- Dirichlet operator: $(D_{\lambda}a)(x) = e^{\lambda(x-1)}a$, $a \in \mathbb{C}^m$, $x \in [0,1]$
- (A, B, C) is regular . . .

•

$$(F_t u)(t) = egin{cases} \mathbb{B} u(t-1), & ext{if } t \geq 1, \ 0, & ext{otherwise} \end{cases}$$

and $I_{\mathbb{C}^m} - F_t$ is invertible for t < 1.

• Finaly, we obtain positivity since $MD_{\lambda} = e^{-\lambda}\mathbb{B}$ so $r(MD_{\lambda}) < 1$ for all $\lambda > 0$.

Thank you for your attention!