From order unit spaces to Jordan-Banach algebras

Mark Roelands, Leiden University

Positivity XII

June 6, 2025

A partially ordered vector space V with cone V_+ is an *order unit space* if:

A partially ordered vector space V with cone V_+ is an order unit space if:

 V_+ is *Archimedean*, that is, $\{\lambda x \colon \lambda \geqslant 0\}$ has an upper bound in V only if $x \leqslant 0$;

A partially ordered vector space V with cone V_+ is an *order unit space* if:

- V_+ is *Archimedean*, that is, $\{\lambda x \colon \lambda \geqslant 0\}$ has an upper bound in V only if $x \leqslant 0$;
- there is $v \in V_+$ such that for all $x \in V$ there is $\lambda > 0$ for which $x \leq \lambda v$. Such a v is called an *order unit*.

By the property of the order unit, we introduce the $order\ unit\ norm$ on V by

$$||x||_{v} := \inf\{\lambda > 0 \colon -\lambda v \leqslant x \leqslant \lambda v\}.$$

By the property of the order unit, we introduce the *order unit norm* on V by

$$||x||_{v} := \inf\{\lambda > 0 \colon -\lambda v \leqslant x \leqslant \lambda v\}.$$

With respect to $\|\cdot\|_{\nu}$:

By the property of the order unit, we introduce the *order unit norm* on V by

$$||x||_{v} := \inf\{\lambda > 0 \colon -\lambda v \leqslant x \leqslant \lambda v\}.$$

With respect to $\|\cdot\|_{\nu}$:

- interior V_+° of V_+ consists of the order units of V.

Example

Let K be a compact and convex subset of a locally convex space. Then

$$A(K) := \{f : K \to \mathbb{R} : f \text{ is affine and continuous}\}$$

with cone

$$A(K)_+ := \{ f \in A(K) \colon f(\omega) \geqslant 0 \text{ for all } \omega \in K \}$$

and order unit $\mathbf{1}_K$ is an order unit space.

Example

Let K be a compact and convex subset of a locally convex space. Then

$$A(K) := \{f : K \to \mathbb{R} : f \text{ is affine and continuous}\}$$

with cone

$$A(K)_+ := \{ f \in A(K) \colon f(\omega) \geqslant 0 \text{ for all } \omega \in K \}$$

and order unit $\mathbf{1}_K$ is an order unit space.

• Note that the order unit norm on A(K) is the maximum norm $\|\cdot\|_{\infty}$.

Theorem (Kadison, 1951)

Let (V, V_+, v) be a complete order unit space and consider its state space $K := \{ \psi \in V^* : \psi \geqslant 0, \ \psi(v) = 1 \}.$

Theorem (Kadison, 1951)

Let (V,V_+,ν) be a complete order unit space and consider its state space $K:=\{\psi\in V^*\colon \psi\geqslant 0,\ \psi(\nu)=1\}$. Then the map $x\mapsto \hat{x}$ where $\hat{x}(\psi):=\psi(x)$ is an isomorphism $V\stackrel{\sim}{\to} A(K)$.

Jordan algebras were created to model particular aspects of physics,

Jordan algebras were created to model particular aspects of physics, more precisely, they arose from the search for a mathematical setting for quantum mechanics.

Jordan algebras were created to model particular aspects of physics, more precisely, they arose from the search for a mathematical setting for quantum mechanics.

Usual interpretation: physical observables are represented by Hermitian matrices (self-adjoint operators on complex Hilbert space).

Jordan algebras were created to model particular aspects of physics, more precisely, they arose from the search for a mathematical setting for quantum mechanics.

Usual interpretation: physical observables are represented by Hermitian matrices (self-adjoint operators on complex Hilbert space).

Algebraic operations do not interact well with this "observability":

Jordan algebras were created to model particular aspects of physics, more precisely, they arose from the search for a mathematical setting for quantum mechanics.

Usual interpretation: physical observables are represented by Hermitian matrices (self-adjoint operators on complex Hilbert space).

Algebraic operations do not interact well with this "observability":

scalar multiplication,

Jordan algebras were created to model particular aspects of physics, more precisely, they arose from the search for a mathematical setting for quantum mechanics.

Usual interpretation: physical observables are represented by Hermitian matrices (self-adjoint operators on complex Hilbert space).

Algebraic operations do not interact well with this "observability":

- scalar multiplication,
- matrix multiplication (composition of operators).

In 1932 the physicist Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics.

In 1932 the physicist Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics.

 Study algebraic properties of Hermitian matrices (self-adjoint operators) to formulate formal algebraic properties and see what other systems satisfy these axioms.

Definition

A real Banach space A equipped with bilinear product \circ is called a JB-algebra, if for all $x, y \in A$ the product satisfies:

$$x \circ y = y \circ x$$
 (commutative),

$$x^2 \circ (x \circ y) = x \circ (x^2 \circ y)$$
 (Jordan identity),

Definition

A real Banach space A equipped with bilinear product \circ is called a JB-algebra, if for all $x, y \in A$ the product satisfies:

- $x \circ y = y \circ x$ (commutative),
- $x^2 \circ (x \circ y) = x \circ (x^2 \circ y)$ (Jordan identity),
- $\|x \circ y\| \le \|x\| \|y\|$ (sub-multiplicative),
- $||x^2|| = ||x||^2$ (C^* -algebra property),
- $||x^2|| \le ||x^2 + y^2||$ (monotonicity).

Definition

A real Banach space A equipped with bilinear product \circ is called a JB-algebra, if for all $x, y \in A$ the product satisfies:

```
x \circ y = y \circ x \qquad \text{(commutative)}, x^2 \circ (x \circ y) = x \circ (x^2 \circ y) \qquad \text{(Jordan identity)}, \|x \circ y\| \leqslant \|x\| \|y\| \qquad \text{(sub-multiplicative)}, \|x^2\| = \|x\|^2 \qquad \text{($C^*$-algebra property)}, \|x^2\| \leqslant \|x^2 + y^2\| \qquad \text{(monotonicity)}.
```

X Note that we do not require the product to be associative!

Definition

A real Banach space A equipped with bilinear product \circ is called a JB-algebra, if for all $x, y \in A$ the product satisfies:

```
x \circ y = y \circ x \qquad \text{(commutative)},
x^2 \circ (x \circ y) = x \circ (x^2 \circ y) \qquad \text{(Jordan identity)},
\|x \circ y\| \leqslant \|x\| \|y\| \qquad \text{(sub-multiplicative)},
\|x^2\| = \|x\|^2 \qquad (C^*\text{-algebra property}),
\|x^2\| \leqslant \|x^2 + y^2\| \qquad \text{(monotonicity)}.
```

- X Note that we do not require the product to be associative!
- ✓ We will assume all JB-algebras in this talk to be unital (unit is denoted by e).

Prototypical Example

Let A be a unital C^* -algebra. Then the self-adjoint part A_{sa} equipped with the product

$$x\circ y:=\tfrac{1}{2}(xy+yx)$$

is a JB-algebra.

Prototypical Example

Let A be a unital C^* -algebra. Then the self-adjoint part A_{sa} equipped with the product

$$x\circ y:=\tfrac{1}{2}(xy+yx)$$

is a JB-algebra.

It is clear that this product is commutative, and it is a straightforward verification that the Jordan identity is satisfied.

To illustrate this, consider the self-adjoint bounded operators $B(H)_{sa}$ on some complex Hilbert space H.

Sub-multiplicativity:

$$||T \circ S|| = ||\frac{1}{2}(TS + ST)|| \leq \frac{1}{2}||TS|| + \frac{1}{2}||ST||$$

$$\leq \frac{1}{2}||T||||S|| + \frac{1}{2}||S|||T|| = ||T||||S||.$$

To illustrate this, consider the self-adjoint bounded operators $B(H)_{sa}$ on some complex Hilbert space H.

Sub-multiplicativity:

$$||T \circ S|| = ||\frac{1}{2}(TS + ST)|| \le \frac{1}{2}||TS|| + \frac{1}{2}||ST||$$

$$\le \frac{1}{2}||T||||S|| + \frac{1}{2}||S|||T|| = ||T||||S||.$$

➤ C*-algebra property:

$$||T^2|| = ||T^*T|| = ||T||^2.$$

To illustrate this, consider the self-adjoint bounded operators $B(H)_{sa}$ on some complex Hilbert space H.

Sub-multiplicativity:

$$||T \circ S|| = ||\frac{1}{2}(TS + ST)|| \leq \frac{1}{2}||TS|| + \frac{1}{2}||ST||$$

$$\leq \frac{1}{2}||T||||S|| + \frac{1}{2}||S|||T|| = ||T||||S||.$$

➤ C*-algebra property:

$$||T^2|| = ||T^*T|| = ||T||^2.$$

► Monotonicity: For $\xi \in H$ with $\|\xi\| \le 1$,

$$||T\xi||^2 = \langle T\xi, T\xi \rangle \leqslant \langle T\xi, T\xi \rangle + \langle S\xi, S\xi \rangle$$
$$= \langle (T^2 + S^2)\xi, \xi \rangle \leqslant ||(T^2 + S^2)\xi||.$$

Theorem 1

➤ Every JB-algebra A is partially ordered by the cone of squares

$$A_+ := \{x^2 \colon x \in A\},\$$

and A_+ is Archimedean;

Theorem

➤ Every JB-algebra A is partially ordered by the cone of squares

$$A_+ := \{x^2 : x \in A\},\$$

and A_+ is Archimedean;

interior of A₊ are the invertible squares;

$\mathsf{Theorem}$

➤ Every JB-algebra A is partially ordered by the cone of squares

$$A_+ := \{x^2 : x \in A\},\$$

and A_+ is Archimedean;

- interior of A₊ are the invertible squares;
- the algebraic unit e is an order unit;

$\mathsf{Theorem}$

➤ Every JB-algebra A is partially ordered by the cone of squares

$$A_+ := \{x^2 : x \in A\},\$$

and A_{+} is Archimedean;

- interior of A₊ are the invertible squares;
- the algebraic unit e is an order unit;
- ▶ the JB-norm $\|\cdot\|$ coincides with the order unit norm $\|\cdot\|_e$.

$\mathsf{Theorem}$

➤ Every JB-algebra A is partially ordered by the cone of squares

$$A_+ := \{x^2 : x \in A\},\$$

and A_{+} is Archimedean;

- interior of A₊ are the invertible squares;
- the algebraic unit e is an order unit;
- ▶ the JB-norm $\|\cdot\|$ coincides with the order unit norm $\|\cdot\|_e$.

✓ Hence JB-algebras are order unit spaces.

Finite dimensional JB-algebras

A finite dimensional unital Jordan algebra A over \mathbb{R} is called *Euclidean* if there exists an inner product on A for which Jordan multiplication is symmetric.

Finite dimensional JB-algebras

A finite dimensional unital Jordan algebra A over \mathbb{R} is called *Euclidean* if there exists an inner product on A for which Jordan multiplication is symmetric.

That is,

$$\langle x \circ y, z \rangle = \langle y, x \circ z \rangle$$
 (for all $x, y, z \in A$).

Finite dimensional JB-algebras

Example

The algebra of $n \times n$ self-adjoint matrices $\operatorname{Herm}_n(\mathbb{F})$, with $\mathbb{F} = \mathbb{R}, \mathbb{C}$, equipped with the Jordan product

$$M \circ N := \frac{1}{2}(MN + NM)$$

and inner product $\langle M, N \rangle := \operatorname{trace}(M \circ N) = \operatorname{trace}(MN)$.

Example

The algebra of $n \times n$ self-adjoint matrices $\operatorname{Herm}_n(\mathbb{F})$, with $\mathbb{F} = \mathbb{R}, \mathbb{C}$, equipped with the Jordan product

$$M \circ N := \frac{1}{2}(MN + NM)$$

and inner product $\langle M, N \rangle := \operatorname{trace}(M \circ N) = \operatorname{trace}(MN)$.

Indeed, for $M, N, P \in \operatorname{Herm}_n(\mathbb{F})$, we find

$$\left\langle P \circ M, N \right\rangle = \tfrac{1}{2} \mathrm{trace}(PMN) + \tfrac{1}{2} \mathrm{trace}(MPN)$$

Example

The algebra of $n \times n$ self-adjoint matrices $\operatorname{Herm}_n(\mathbb{F})$, with $\mathbb{F} = \mathbb{R}, \mathbb{C}$, equipped with the Jordan product

$$M \circ N := \frac{1}{2}(MN + NM)$$

and inner product $\langle M, N \rangle := \operatorname{trace}(M \circ N) = \operatorname{trace}(MN)$.

Indeed, for $M, N, P \in \operatorname{Herm}_n(\mathbb{F})$, we find

$$\left\langle P \circ M, N \right\rangle = \tfrac{1}{2} \mathrm{trace}(PMN) + \tfrac{1}{2} \mathrm{trace}(MPN)$$

and

$$\langle M, P \circ N \rangle = \frac{1}{2} \mathrm{trace}(MPN) + \frac{1}{2} \mathrm{trace}(MNP).$$

Finite dimensional JB-algebras ↔ Euclidean Jordan algebras

- every Euclidean Jordan algebra can be renormed to be a JB-algebra;
- every finite dimensional JB-algebra can be equipped with an inner product turning it into a Euclidean Jordan algebra.

Finite dimensional JB-algebras ↔ Euclidean Jordan algebras

- every Euclidean Jordan algebra can be renormed to be a JB-algebra;
- every finite dimensional JB-algebra can be equipped with an inner product turning it into a Euclidean Jordan algebra.
- ✓ Hence the finite dimensional JB-algebras are precisely the Euclidean Jordan algebras.

Let H be a real Hilbert space and consider $H \times \mathbb{R}$ equipped with the product

$$(x,\lambda)\circ(y,\mu):=(\mu x+\lambda y,\langle x,y\rangle+\lambda\mu),$$

inner product

$$\langle (x,\lambda), (y,\mu) \rangle := \langle x,y \rangle + \lambda \mu,$$

and norm

$$\|(x,\lambda)\| := \sqrt{\langle x,x\rangle} + |\lambda|.$$

Let H be a real Hilbert space and consider $H \times \mathbb{R}$ equipped with the product

$$(x,\lambda)\circ(y,\mu):=(\mu x+\lambda y,\langle x,y\rangle+\lambda\mu),$$

inner product

$$\langle (x,\lambda), (y,\mu) \rangle := \langle x,y \rangle + \lambda \mu,$$

and norm

$$\|(x,\lambda)\| := \sqrt{\langle x,x\rangle} + |\lambda|.$$

 \triangleright This is a JB-algebra, with unit (0,1), for the norm.

Let H be a real Hilbert space and consider $H \times \mathbb{R}$ equipped with the product

$$(x,\lambda)\circ(y,\mu):=(\mu x+\lambda y,\langle x,y\rangle+\lambda\mu),$$

inner product

$$\langle (x,\lambda), (y,\mu) \rangle := \langle x,y \rangle + \lambda \mu,$$

and norm

$$\|(x,\lambda)\| := \sqrt{\langle x,x\rangle} + |\lambda|.$$

- \triangleright This is a JB-algebra, with unit (0,1), for the norm.
- > It is a Hilbert space for the inner product.

Let H be a real Hilbert space and consider $H \times \mathbb{R}$ equipped with the product

$$(x, \lambda) \circ (y, \mu) := (\mu x + \lambda y, \langle x, y \rangle + \lambda \mu),$$

inner product

$$\langle (x,\lambda), (y,\mu) \rangle := \langle x,y \rangle + \lambda \mu,$$

and norm

$$\|(x,\lambda)\| := \sqrt{\langle x,x\rangle} + |\lambda|.$$

- \triangleright This is a JB-algebra, with unit (0,1), for the norm.
- ➤ It is a Hilbert space for the inner product.
- ➤ These JB-algebras are called *spin factors*.

General question

Algebra structure from properties of the cone

From which properties of a cone V_+ in an order unit space can we conclude that V is a JB-algebra?

Let V be a finite dimensional real vector space with generating cone V_+ .

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T: V \to V$ is called an automorphism of the cone if $T(V_+) = V_+$.

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T: V \to V$ is called an automorphism of the cone if $T(V_+) = V_+$. This subgroup of $\mathrm{GL}(\mathrm{V})$ is denoted by $\mathrm{Aut}(V_+)$.

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T\colon V\to V$ is called an automorphism of the cone if $T(V_+)=V_+$. This subgroup of $\mathrm{GL}(\mathrm{V})$ is denoted by $\mathrm{Aut}(V_+)$.

A generating cone in V has non-empty interior, and V_+ is called homogeneous if $\operatorname{Aut}(V_+)$ acts transitively on V_+° ,

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T\colon V\to V$ is called an automorphism of the cone if $T(V_+)=V_+$. This subgroup of $\mathrm{GL}(V)$ is denoted by $\mathrm{Aut}(V_+)$.

A generating cone in V has non-empty interior, and V_+ is called homogeneous if $\operatorname{Aut}(V_+)$ acts transitively on V_+° , i.e., for any $x,y\in V_+^{\circ}$ there is $T\in\operatorname{Aut}(V_+)$ such that Tx=y.

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T\colon V\to V$ is called an automorphism of the cone if $T(V_+)=V_+$. This subgroup of $\mathrm{GL}(\mathrm{V})$ is denoted by $\mathrm{Aut}(V_+)$.

A generating cone in V has non-empty interior, and V_+ is called *homogeneous* if $\operatorname{Aut}(V_+)$ acts transitively on V_+° , i.e., for any $x,y\in V_+^{\circ}$ there is $T\in\operatorname{Aut}(V_+)$ such that Tx=y.

For an inner product $\langle \cdot, \cdot \rangle$ on V, the *dual cone* V_+^* is defined by

$$V_+^* := \{ x \in V : \langle y, x \rangle \geqslant 0, \text{ for all } y \in V_+ \}.$$

Let V be a finite dimensional real vector space with generating cone V_+ . A bijective linear map $T\colon V\to V$ is called an automorphism of the cone if $T(V_+)=V_+$. This subgroup of $\mathrm{GL}(\mathrm{V})$ is denoted by $\mathrm{Aut}(V_+)$.

A generating cone in V has non-empty interior, and V_+ is called *homogeneous* if $\operatorname{Aut}(V_+)$ acts transitively on V_+° , i.e., for any $x,y\in V_+^{\circ}$ there is $T\in\operatorname{Aut}(V_+)$ such that Tx=y.

For an inner product $\langle \cdot, \cdot \rangle$ on V, the *dual cone* V_+^* is defined by

$$V_+^* := \{x \in V : \langle y, x \rangle \geqslant 0, \text{ for all } y \in V_+\}.$$

The cone V_+ is called *self-dual* if $V_+ = V_+^*$.

A cone V_+ in V is called *symmetric* if it is self-dual w.r.t. some inner product $\langle\cdot,\cdot\rangle$ and homogeneous.

A cone V_+ in V is called *symmetric* if it is self-dual w.r.t. some inner product $\langle\cdot,\cdot\rangle$ and homogeneous.

Theorem

Euclidean Jordan algebras have symmetric cones.

A cone V_+ in V is called *symmetric* if it is self-dual w.r.t. some inner product $\langle\cdot,\cdot\rangle$ and homogeneous.

Theorem

Euclidean Jordan algebras have symmetric cones.

Example

- In $A := \operatorname{Herm}_n(\mathbb{F})$, the cone A_+ is
 - {positive semi-definite matrices} = { $B^*B : B \in \operatorname{Mat}_n(\mathbb{F})$ };
- and the interior of A_+ is
 - {positive definite matrices} = $A_+ \cap \{\text{invertible matrices}\}.$

A cone V_+ in V is called *symmetric* if it is self-dual w.r.t. some inner product $\langle\cdot,\cdot\rangle$ and homogeneous.

Theorem

Euclidean Jordan algebras have symmetric cones.

Example

• In $A := \operatorname{Herm}_n(\mathbb{F})$, the cone A_+ is

 $\{\text{positive semi-definite matrices}\} = \{B^*B \colon B \in \operatorname{Mat}_n(\mathbb{F})\};$

ullet and the interior of A_+ is

 $\{\text{positive definite matrices}\} = A_+ \cap \{\text{invertible matrices}\}.$

Hence $T: N \mapsto M^{-1/2}NM^{-1/2}$ is an automorphism of the cone:

A cone V_+ in V is called *symmetric* if it is self-dual w.r.t. some inner product $\langle\cdot,\cdot\rangle$ and homogeneous.

Theorem

Euclidean Jordan algebras have symmetric cones.

Example

• In $A := \operatorname{Herm}_n(\mathbb{F})$, the cone A_+ is

 $\{\text{positive semi-definite matrices}\} = \{B^*B \colon B \in \operatorname{Mat}_n(\mathbb{F})\};$

 \bullet and the interior of A_+ is

 $\{ \text{positive definite matrices} \} = A_+ \cap \{ \text{invertible matrices} \}.$

Hence $T: N \mapsto M^{-1/2}NM^{-1/2}$ is an automorphism of the cone:

$$M^{-1/2}NM^{-1/2} = M^{-1/2}B^*BM^{-1/2} = (BM^{-1/2})^*BM^{-1/2}.$$

Example (continued)

Since TM = I, it follows that A_+ is homogeneous.

Example (continued)

Since TM = I, it follows that A_+ is homogeneous.

For
$$M, N \in A_+$$
, we see that

$$\begin{split} \operatorname{trace}(\textit{NM}) &= \operatorname{trace}(\textit{N}(\lambda_1 P_1 + \dots + \lambda_n P_n)) \\ &= \sum_{k=1}^n \lambda_k \operatorname{trace}(\textit{NP}_k) = \sum_{k=1}^n \lambda_k \operatorname{trace}(\textit{P}_k \textit{NP}_k) \geqslant 0, \end{split}$$

Example (continued)

Since TM = I, it follows that A_+ is homogeneous.

For
$$M, N \in A_+$$
, we see that
$$\operatorname{trace}(NM) = \operatorname{trace}(N(\lambda_1 P_1 + \dots + \lambda_n P_n))$$
$$= \sum_{k=0}^{n} \lambda_k \operatorname{trace}(NP_k) = \sum_{k=0}^{n} \lambda_k \operatorname{trace}(P_k NP_k) \geqslant 0,$$

because $P_k NP_k = P_k B^* BP_K = (BP_k)^* BP_k$.

Example (continued)

Since TM = I, it follows that A_+ is homogeneous.

For
$$M, N \in A_+$$
, we see that
$$\operatorname{trace}(NM) = \operatorname{trace}(N(\lambda_1 P_1 + \dots + \lambda_n P_n))$$
$$= \sum_{k=1}^n \lambda_k \operatorname{trace}(NP_k) = \sum_{k=1}^n \lambda_k \operatorname{trace}(P_k NP_k) \geqslant 0,$$

because $P_k NP_k = P_k B^* BP_K = (BP_k)^* BP_k$.

If $M=QDQ^*$ is such that $\mathrm{trace}(NM)\geqslant 0$ for all $N\in A_+$, then $N:=QE_{kk}Q^*\in A_+$ and

$$\lambda_k = \operatorname{trace}(E_{kk}D) = \lambda_k \operatorname{trace}(QE_{kk}QQ^*DQ^*) = \operatorname{trace}(NM) \geqslant 0,$$

so $M \in A_+$. Hence A_+ is self-dual.

Remarkably, the converse is also true!

Remarkably, the converse is also true!

Theorem (Koecher-Vinberg, \sim 1960)

Let (V, V_+, v) be a finite dimensional order unit space. If V_+ is symmetric, then V is a Euclidean Jordan algebra with unit v and cone of squares V_+ .

There is another way to characterise Euclidean Jordan algebras by looking at cones.

There is another way to characterise Euclidean Jordan algebras by looking at cones. A bijective map $\Phi\colon V_+^\circ\to V_+^\circ$ is called gauge-reversing if

 $x \le y$ if and only if $\Phi(y) \le \Phi(x)$,

There is another way to characterise Euclidean Jordan algebras by looking at cones. A bijective map $\Phi\colon V_+^\circ\to V_+^\circ$ is called gauge-reversing if

```
x \leqslant y if and only if \Phi(y) \leqslant \Phi(x),
```

$$\Phi(\lambda x) = \lambda^{-1}\Phi(x)$$
, for all $\lambda > 0$.

There is another way to characterise Euclidean Jordan algebras by looking at cones. A bijective map $\Phi\colon V_+^\circ\to V_+^\circ$ is called gauge-reversing if

- $x \le y$ if and only if $\Phi(y) \le \Phi(x)$,
- $\Phi(\lambda x) = \lambda^{-1}\Phi(x)$, for all $\lambda > 0$.

Remark

The inversion map $x \mapsto x^{-1}$ in a JB-algebra is gauge-reversing.

There is another way to characterise Euclidean Jordan algebras by looking at cones. A bijective map $\Phi\colon V_+^\circ\to V_+^\circ$ is called gauge-reversing if

- $x \le y$ if and only if $\Phi(y) \le \Phi(x)$,
- $\Phi(\lambda x) = \lambda^{-1}\Phi(x)$, for all $\lambda > 0$.

Remark

The inversion map $x \mapsto x^{-1}$ in a JB-algebra is gauge-reversing.

Example

For $\operatorname{Herm}_n(\mathbb{F})$:

There is another way to characterise Euclidean Jordan algebras by looking at cones. A bijective map $\Phi\colon V_+^\circ\to V_+^\circ$ is called gauge-reversing if

- $x \le y$ if and only if $\Phi(y) \le \Phi(x)$,
- $\Phi(\lambda x) = \lambda^{-1}\Phi(x)$, for all $\lambda > 0$.

Remark

The inversion map $x \mapsto x^{-1}$ in a JB-algebra is gauge-reversing.

Example

For $\operatorname{Herm}_n(\mathbb{F})$: use that $N \mapsto M^{-1/2}NM^{-1/2}$ is in $\operatorname{Aut}(A_+)$.

$$N \leq M \Rightarrow M^{-1/2}NM^{-1/2} \leq I \Rightarrow I \leq M^{1/2}N^{-1}M^{1/2}$$

 $\Rightarrow M^{-1} \leq N^{-1}$

Conversely, the existence of a gauge-reversing bijection implies that there is a Jordan algebra structure!

Conversely, the existence of a gauge-reversing bijection implies that there is a Jordan algebra structure!

Theorem (Walsh, 2013)

Let (V, V_+, v) be a finite dimensional order unit space. If there exists a gauge-reversing bijection $\Phi \colon V_+^{\circ} \to V_+^{\circ}$, then V is a Euclidean Jordan algebra with unit v and cone of squares V_+ .

Conversely, the existence of a gauge-reversing bijection implies that there is a Jordan algebra structure!

Theorem (Walsh, 2013)

Let (V, V_+, v) be a finite dimensional order unit space. If there exists a gauge-reversing bijection $\Phi \colon V_+^{\circ} \to V_+^{\circ}$, then V is a Euclidean Jordan algebra with unit v and cone of squares V_+ .

 Goal: to prove an infinite dimensional characterisation for JB-algebras using gauge-reversing bijections.

 Attempt to prove this infinite dimensional generalisation with additional assumptions on the cone.

- Attempt to prove this infinite dimensional generalisation with additional assumptions on the cone.
- First step: assume the cone is strictly convex.

- Attempt to prove this infinite dimensional generalisation with additional assumptions on the cone.
- First step: assume the cone is strictly convex. That is, for any two linearly independent $x, y \in \partial V_+$ the segment $\{tx + (1-t)y \colon 0 < t < 1\}$ lies in V_+° .

- Attempt to prove this infinite dimensional generalisation with additional assumptions on the cone.
- First step: assume the cone is strictly convex. That is, for any two linearly independent $x, y \in \partial V_+$ the segment $\{tx + (1-t)y \colon 0 < t < 1\}$ lies in V_+° .

Theorem (v. Imhoff, Lemmens, R., 2017)

Let (V, V_+, v) be a complete order unit space with strictly convex cone. If there exists a gauge-reversing bijection $\Phi \colon V_+^{\circ} \to V_+^{\circ}$, then V is a spin factor with cone of squares V_+ .

✓ Note that the JB-algebras with strictly convex cones are precisely the spin factors.

• Second step: assume that the order unit space is reflexive.

• Second step: assume that the order unit space is reflexive.

Theorem (Lemmens, R., Wortel, 2025)

Let (V, V_+, v) be a reflexive order unit space. If there exists a gauge-reversing bijection $\Phi \colon V_+^{\circ} \to V_+^{\circ}$, then V is a finite order and algebra direct sum of spin factors and Euclidean Jordan algebras with unit v and cone of squares V_+ .

• Second step: assume that the order unit space is reflexive.

Theorem (Lemmens, R., Wortel, 2025)

Let (V, V_+, v) be a reflexive order unit space. If there exists a gauge-reversing bijection $\Phi \colon V_+^\circ \to V_+^\circ$, then V is a finite order and algebra direct sum of spin factors and Euclidean Jordan algebras with unit v and cone of squares V_+ .

✓ Note that the reflexive JB-algebras are precisely the finite order and algebra direct sums of spin factors and Euclidean Jordan algebras.

• Final step: in full generality.

• Final step: in full generality.

Theorem (R., Tiersma, 2025)

Let (V, V_+, v) be a complete order unit space. If there exists a gauge-reversing bijection $\Phi \colon V_+^{\circ} \to V_+^{\circ}$, then V is a JB-algebra with unit v and cone of squares V_+ .

The interior of the cone V_+° can be equipped with an interesting metric called *Thompson's metric*, denoted by d_T .

The interior of the cone V_+° can be equipped with an interesting metric called *Thompson's metric*, denoted by d_T .

Definition

For $x, y \in V_+^{\circ}$ consider

$$\lambda_{x,y} := \inf\{\lambda > 0 \colon x \leqslant \lambda y \text{ and } y \leqslant \lambda x\}.$$

The interior of the cone V_+° can be equipped with an interesting metric called *Thompson's metric*, denoted by d_T .

Definition

For $x, y \in V_+^{\circ}$ consider

$$\lambda_{x,y} := \inf\{\lambda > 0 \colon x \leqslant \lambda y \text{ and } y \leqslant \lambda x\}.$$

Thompson's metric is defined by

$$d_T(x, y) := \log \lambda_{x,y}$$
.

• By a d_T -symmetry σ we mean an isometry for d_T with an isolated fixed point and such that $\sigma^2 = \mathrm{id}$.

The interior of the cone V_+° can be equipped with an interesting metric called *Thompson's metric*, denoted by d_T .

Definition

For $x, y \in V_+^{\circ}$ consider

$$\lambda_{x,y} := \inf\{\lambda > 0 \colon x \leqslant \lambda y \text{ and } y \leqslant \lambda x\}.$$

Thompson's metric is defined by

$$d_T(x, y) := \log \lambda_{x, y}$$
.

- By a d_T -symmetry σ we mean an isometry for d_T with an isolated fixed point and such that $\sigma^2 = \mathrm{id}$.
- The inversion $x \mapsto x^{-1}$ on A_+° in a JB-algebra is a d_T -symmetry with isolated fixed point e.

The interior of the cone V_+° can be equipped with an interesting metric called *Thompson's metric*, denoted by d_T .

Definition

For $x, y \in V_+^{\circ}$ consider

$$\lambda_{x,y} := \inf\{\lambda > 0 \colon x \leqslant \lambda y \text{ and } y \leqslant \lambda x\}.$$

Thompson's metric is defined by

$$d_T(x, y) := \log \lambda_{x, y}$$
.

- By a d_T -symmetry σ we mean an isometry for d_T with an isolated fixed point and such that $\sigma^2 = \mathrm{id}$.
- The inversion $x \mapsto x^{-1}$ on A_+° in a JB-algebra is a d_T -symmetry with isolated fixed point e.

Theorem (R., Tiersma, 2025)

Let (V, V_+, v) be a complete order unit space. If there exists a d_T -symmetry $\sigma \colon V_+^{\circ} \to V_+^{\circ}$, then V is a JB-algebra with unit v and cone of squares V_+ .

Theorem (R., Tiersma, 2025)

Let (V, V_+, v) be a complete order unit space. If there exists a d_T -symmetry $\sigma \colon V_+^{\circ} \to V_+^{\circ}$, then V is a JB-algebra with unit v and cone of squares V_+ .

✓ Further details of these results will be discussed in the talk by Samuel Tiersma. Thank you for your attention!