On positive commutators of positive operators

Marko Kandić

Fakulteta za matematiko in fiziko Univerza v Ljubljani

marko.kandic@fmf.uni-lj.si

June 6th, 2025

Let A be an associative algebra over a field F. An element $c \in A$ is a **commutator**, if it can be written as

$$c = ab - ba =: [a, b]$$

for some $a, b \in A$.

Let A be an associative algebra over a field F. An element $c \in A$ is a **commutator**, if it can be written as

$$c = ab - ba =: [a, b]$$

for some $a, b \in A$.

Jaroslav Zemánek's Question

- Let A and B be non-negative matrices with a non-negative commutator AB BA. Is AB BA a nilpotent matrix?
- Let A and B be positive compact operators on a Banach lattice with a positive commutator AB BA. Is AB BA quasinilpotent?

Let A be an associative algebra over a field F. An element $c \in A$ is a **commutator**, if it can be written as

$$c = ab - ba =: [a, b]$$

for some $a, b \in A$.

Jaroslav Zemánek's Question

- Let A and B be non-negative matrices with a non-negative commutator AB BA. Is AB BA a nilpotent matrix?
- Let A and B be positive compact operators on a Banach lattice with a positive commutator AB BA. Is AB BA quasinilpotent?

Question

Which $n \times n$ matrices over a field F are commutators?

Theorem (Shoda 1937, Albert, Muckenhoupt 1957)

A matrix over a field is a commutator if and only if it has zero trace.

Theorem (Shoda 1937, Albert, Muckenhoupt 1957)

A matrix over a field is a commutator if and only if it has zero trace.

Question

Which bounded operators on a given Banach space are commutators?

Theorem (Shoda 1937, Albert, Muckenhoupt 1957)

A matrix over a field is a commutator if and only if it has zero trace.

Question

Which bounded operators on a given Banach space are commutators?

Hilbert space case history

- The identity operator on a Hilbert space is not a commutator of bounded operators. (Wintner 1947)
- The unit element of a normed algebra is not a commutator. (Wielandt 1949)
- Operators of the form $K + \lambda I$ with K compact and $\lambda \neq 0$ are not commutators. (Halmos 1963)
- Every compact operator is a commutator (if dim $\mathcal{H}=\infty$). (Brown, Halmos, Pearcy 1965)

- Separable case: A bounded operator is not a commutator if and only if it is of the form $K + \lambda I$ for some compact operator K and a nonzero scalar λ . (Brown, Pearcy 1965)
- General case: If dim $\mathcal{H}=\aleph>\aleph_0$, then $\mathcal{B}(\mathcal{H})$ has a the largest ideal \mathcal{I}_{\aleph} .

Theorem (Brown, Pearcy 1965)

An operator in $\mathcal{B}(\mathcal{H})$ is not a commutator if and only if it is of the form $K + \lambda I$ for some $K \in \mathcal{I}_{\aleph}$ and some nonzero scalar $\lambda \neq 0$.

If \mathcal{H} is separable, then $\mathcal{J} = \mathcal{K}(\mathcal{H})$ is the largest proper ideal in $\mathcal{B}(\mathcal{H})$.

Banach space history

Theorem (Schneeberger, 1971)

Every compact operator on an infinite-dimensional separable Banach space $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator.

Banach space history

Theorem (Schneeberger, 1971)

Every compact operator on an infinite-dimensional separable Banach space $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator.

An operator on a Banach space X is not a commutator if and only if it is of the form $K+\lambda I$ for some compact operator K and a nonzero scalar λ in the following cases.

- ℓ^p (1 < p < ∞) (Apostol 1972) and c_0 (Apostol 1973)
- ℓ^1 (Dosev 2009)

Banach space history

Theorem (Schneeberger, 1971)

Every compact operator on an infinite-dimensional separable Banach space $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator.

An operator on a Banach space X is not a commutator if and only if it is of the form $K+\lambda I$ for some compact operator K and a nonzero scalar λ in the following cases.

- ℓ^p $(1 (Apostol 1972) and <math>c_0$ (Apostol 1973)
- ℓ^1 (Dosev 2009)

Theorem (Dosev, Johnson 2010)

An operator on ℓ^{∞} is not a commutator if and only if it is of the form $K + \lambda I$ for some strictly singular operator K and some nonzero scalar λ .

Theorem (Dosev, Johnson, Schechtman 2013)

An operator on $L^p[0,1]$ $(1 \le p < \infty)$ is not a commtuator if and only if it is of the form $K + \lambda I$ where K belongs to the largest ideal in $\mathcal{B}(L^p[0,1])$ and some scalar $\lambda \ne 0$.

Theorem (Dosev, Johnson, Schechtman 2013)

An operator on $L^p[0,1]$ $(1 \le p < \infty)$ is not a commtuator if and only if it is of the form $K + \lambda I$ where K belongs to the largest ideal in $\mathcal{B}(L^p[0,1])$ and some scalar $\lambda \ne 0$.

Conjecture

Let X be a Banach space for which we have $X\cong (\sum X)_p$ $(1\leq p\leq \infty)$ or p=0. Suppose that $\mathcal{B}(X)$ has the largest ideal \mathcal{J} . Then a bounded operator on X is not a commutator if and only if it is of the form $K+\lambda I$ for some $K\in \mathcal{J}$ and $\lambda\neq 0$.

Questions and problems

Let A and B be positive operators on a Banach lattice with a positive commutator C := AB - BA.

- Determine spectral properties of C (spectral radius, connection with the Jacobson radical, ...).
- Can a positive commutator of positive operators be invertible?
- Which positive operators are commutators of positive operators?
- Determine the dimension of the algebra generated by special positive operators A and B (at least in case for matrices)

• . . .

Questions and problems

Let A and B be positive operators on a Banach lattice with a positive commutator C := AB - BA.

- Determine spectral properties of C (spectral radius, connection with the Jacobson radical, ...).
- Can a positive commutator of positive operators be invertible?
- Which positive operators are commutators of positive operators?
- Determine the dimension of the algebra generated by special positive operators A and B (at least in case for matrices)
- . . .

Hilbert space setting is boring! ($C \ge D \Leftrightarrow C - D$ is positive semi-definite)

$$AB - BA = (AB - BA)^* = B^*A^* - A^*B^* = BA - AB$$

The Hilbert space ℓ^2 is a Banach lattice. Consider the Hilbert space $\mathcal{H}=\bigoplus_{i=1}^\infty \ell^2$ ordered coordinatewise. Choose an increasing bounded sequence $0 \leq T_1 \leq T_2 \leq \cdots$ of positive operators on ℓ^2 . Then

$$A = \begin{bmatrix} 0 & \tau_1 & 0 & 0 & \cdots \\ 0 & 0 & \tau_2 & 0 & \cdots \\ 0 & 0 & 0 & \tau_3 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ i & 0 & 0 & 0 & \cdots \\ 0 & i & 0 & 0 & \cdots \\ 0 & 0 & i & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

are positive operators on \mathcal{H} ,

$$AB-BA = \left[\begin{array}{ccccccc} \tau_1 & 0 & 0 & 0 & \cdots \\ 0 & \tau_2 - \tau_1 & 0 & 0 & \cdots \\ 0 & 0 & \tau_3 - \tau_2 & 0 & \cdots \\ 0 & 0 & 0 & \tau_4 - \tau_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right],$$

with

$$\sigma(AB - BA) = \overline{\bigcup_{i=1}^{\infty} \sigma(T_i - T_{i-1})} \qquad (T_0 := 0).$$

Theorem (Bračič, Drnovšek, Farforovskaya, Rabkin, Zemánek 2009)

Let A and B be positive compact operators with a positive commutator AB - BA. Then AB - BA is quasinilpotent and is contained in the radical of the Banach algebra generated by A and B.

Matrix case: AB - BA is nilpotent and permutation similar to a strictly upper-triangular matrix.

Question

Is it enough to assume that one of A and B is compact?

Theorem

The positive commutator AB - BA of A and B is quasinilpotent in the following cases:

- Operators A and B are positive with one of them compact. (Gao 2014)
- $AB \ge BA \ge 0$ and AB (or BA) is power compact. (Drnovšek 2012)

Theorem

The positive commutator AB - BA of A and B is quasinilpotent in the following cases:

- Operators A and B are positive with one of them compact. (Gao 2014)
- $AB \ge BA \ge 0$ and AB (or BA) is power compact. (Drnovšek 2012)

Theorem (K., Šivic 2017a)

Let A and B be positive operators with a positive commutator. If one of them is compact, then AB-BA is contained in the radical of the Banach algebra generated by them.

Let A and B be compact operators on a Banach lattice X such that $AB \geq BA \geq 0$. Is the commutator AB - BA contained in the radical of the Banach algebra generated by A and B?

Let A and B be compact operators on a Banach lattice X such that $AB \geq BA \geq 0$. Is the commutator AB - BA contained in the radical of the Banach algebra generated by A and B?

Theorem (K., Šivic 2017a)

- If dim X = 2, yes.
- On every Banach lattice X with $\dim X \geq 3$ there exist finite rank operators A and B such that $AB \geq BA \geq 0$ whereas their commutator AB BA is not contained in the radical.

Let A and B be compact operators on a Banach lattice X such that $AB \geq BA \geq 0$. Is the commutator AB - BA contained in the radical of the Banach algebra generated by A and B?

Theorem (K., Šivic 2017a)

- If $\dim X = 2$, yes.
- On every Banach lattice X with dim X ≥ 3 there exist finite rank operators A and B such that AB ≥ BA ≥ 0 whereas their commutator AB − BA is not contained in the radical.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Longrightarrow \quad AB - BA = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and
$$A(AB - BA)(e_1 + e_3) = e_1 + e_3$$
.

Can a positive commutator of positive operators be invertible?

Can a positive commutator of positive operators be invertible?

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2I & 0 & \cdots \\ 0 & 0 & 0 & 3I & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \text{in} \quad B = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ I & 0 & 0 & 0 & \cdots \\ 0 & I & 0 & 0 & \cdots \\ 0 & 0 & I & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

We have AB - BA = I which is impossible (Wielandt)!?

Can a positive commutator of positive operators be invertible?

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2I & 0 & \cdots \\ 0 & 0 & 0 & 3I & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \text{in} \quad B = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ I & 0 & 0 & 0 & \cdots \\ 0 & I & 0 & 0 & \cdots \\ 0 & 0 & I & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

We have AB - BA = I which is impossible (Wielandt)!?

Special cases

- Finite-dimensional case: commutator is nilpotent;
- Infinite-dimensional case: A or B is strictly singular \Rightarrow AB BA is strictly singular.

Marko Kandić (FMF)

Can a positive commutator of positive operators be invertible?

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2I & 0 & \cdots \\ 0 & 0 & 0 & 3I & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \text{in} \quad B = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ I & 0 & 0 & 0 & \cdots \\ 0 & I & 0 & 0 & \cdots \\ 0 & 0 & I & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

We have AB - BA = I which is impossible (Wielandt)!?

Special cases

- Finite-dimensional case: commutator is nilpotent;
- Infinite-dimensional case: A or B is strictly singular \Rightarrow AB BA is strictly singular.

Theorem (Drnovšek, K. 2011)

If AB - BA is invertible, then $0 \notin \rho_{\infty}(AB - BA)$.

Theorem (Shoda 1937, Albert and Muckenhoupt 1957)

A matrix C over a field is a commutator if and only if its trace is zero.

Question

Which positive matrices are positive commutators of positive matrices?

Theorem (Shoda 1937, Albert and Muckenhoupt 1957)

A matrix C over a field is a commutator if and only if its trace is zero.

Question

Which positive matrices are positive commutators of positive matrices?

• If $A, B \ge 0$ and $AB - BA \ge 0$, then AB - BA is nilpotent.

Theorem (Shoda 1937, Albert and Muckenhoupt 1957)

A matrix C over a field is a commutator if and only if its trace is zero.

Question

Which positive matrices are positive commutators of positive matrices?

• If $A, B \ge 0$ and $AB - BA \ge 0$, then AB - BA is nilpotent.

Theorem (Drnovšek, K. 2019)

Let C be an order continuous positive operator on a Banach lattice with the projection property.

- The operator C is nilpotent if and only if there exists a positive central operator A and a positive order continuous nilpotent operator B such that C = AB BA.
- If C is compact, then B can be chosen to be a compact operator.

Theorem (Schneeberger, 1971)

Every compact operator on an infinite-dimensional separable Banach space $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator.

Question

Let C be a positive compact (quasinilpotent) operator na ℓ^p . Is C a commutator of positive operators?

Theorem (Schneeberger, 1971)

Every compact operator on an infinite-dimensional separable Banach space $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator.

Question

Let C be a positive compact (quasinilpotent) operator na ℓ^p . Is C a commutator of positive operators?

Theorem (Drnovšek, K. 2019)

Let $C = (c_{i,j})_{i,j=1}^{\infty}$ be a positive operator on ℓ^p $(1 \le p \le \infty)$ such that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sqrt{c_{ij}} < \infty$. Then the following are equivalent:

- C = AB BA for some positive diagonal operator A na ℓ^p and some positive compact quasinilpotent operator B on ℓ^p ;
- C = AB BA for some positive operators A and B on ℓ^p with one of them compact;
- C is quasinilpotent.

Example

Let $(w_i)_{i=1}^{\infty}$ be a decreasing sequence of positive real numbers which converges to 0 slowly enough that the series $\sum_{i=1}^{\infty} w_i$ diverges. Then

$$C = \left[\begin{array}{ccccc} 0 & w_1 & 0 & 0 & \cdots \\ 0 & 0 & w_2 & 0 & \cdots \\ 0 & 0 & 0 & w_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{array} \right]$$

defines a weighted shift on ℓ^2 which is a positive compact quasinilpotent operator.

- Operator *C* cannot be written as a commutator of positive operators with one of them diagonal.
- Operator C cannot be written as a commutator of positive operator with at least one of them compact and at least one of them quasinilpotent.
- Is C a commutator of positive operators with one of them compact?

Theorem (Drnovšek, K. 2019)

A positive compact operator on a separable infinite-dimensional Banach lattice $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator of positive operators.

Theorem (Drnovšek, K. 2019)

A positive compact operator on a separable infinite-dimensional Banach lattice $L^p(\mu)$ $(1 \le p < \infty)$ is a commutator of positive operators.

Theorem

If $1 \le p < \infty$, then every separable Banach lattice L^p is order and isometric isomorphic to one of the following Banach lattices:

- ℓ_n^p or ℓ^p ;
- $L^p[0,1]$;
- $\ell_n^p \oplus L^p[0,1]$ or $\ell^p \oplus L^p[0,1]$.

Theorem (Drnovšek, K. 2019)

Suppose that the Banach lattice $X=(\bigoplus_{n=1}^\infty X_n)_p$ is an order Pelczyński decomposition of X, where $1\leq p\leq \infty$. Let Y be a Banach lattice with the property that there exist positive operators $S:Y\to X$ and $T:X\to Y$ such that $\|S\|=1$ and TS is the identity operator on Y. If C is a positive order continuous operator on $(Y\oplus X)_p$, then C is a commutator between two positive operators in each of the following cases:

- **1** C is semi-compact, and X and X^* have order continuous norms.
- ② C is semi-compact, C* is AM-compact and X has order continuous norm.
- \bullet C is compact, and either X or X^* have order continuous norms.

Can a commutator be arbitrary close to the identity operator?

Can a commutator be arbitrary close to the identity operator?

Finite-dimensional case

If $\dim X < \infty$, commutators have zero trace. Therefore, at least one eigenvalue λ of a commutator C is outside the disk $\{z \in \mathbb{C}: |z-1| < 1\}$ yielding

$$||C - I|| \ge r(C - I) \ge |\lambda - 1| \ge 1.$$

Can a commutator be arbitrary close to the identity operator?

Finite-dimensional case

If $\dim X < \infty$, commutators have zero trace. Therefore, at least one eigenvalue λ of a commutator C is outside the disk $\{z \in \mathbb{C}: |z-1| < 1\}$ yielding

$$||C - I|| \ge r(C - I) \ge |\lambda - 1| \ge 1.$$

Theorem (Popa 1982)

Let \mathcal{H} be an infinite-dimensional Hilbert space. Let $A, B \in \mathcal{B}(\mathcal{H})$ be such that

$$||[A, B] - I|| \le \varepsilon$$

for some $\varepsilon > 0$. Then

$$||A|| \cdot ||B|| \ge \frac{1}{2} \ln \frac{1}{\varepsilon}$$
.

Popa's order analog (Drnovšek, K. 2025)

Let a and b be elements of a unital ordered normed algebra $\mathcal A$ with unit e. Suppose that at least one of the elements a and b is positive, and that for some $\varepsilon>0$ there exists an element $x\in\mathcal A$ with $\|x\|\leq\varepsilon$ such that

$$[a,b] \geq e + x.$$

If the cone A^+ is normal with normality constant α , then

$$||a|| \cdot ||b|| \ge \frac{1}{2\alpha} \ln \frac{1}{\alpha \varepsilon}$$
.

In particular, if the norm on ${\cal A}$ is monotone, then

$$||a|| \cdot ||b|| \ge \frac{1}{2} \ln \frac{1}{\varepsilon}$$
.

Theorem (Tao 2019)

Let \mathcal{H} be an infinite-dimensional Hilbert space. Then, for any $\varepsilon \in (0, 1/2)$, there exist operators $A, B \in \mathcal{B}(\mathcal{H})$ such that

$$\|[A,B]-I\| \leq \varepsilon$$
 and $\|A\|\cdot \|B\| = O(\ln^5 \frac{1}{\varepsilon}).$

Theorem (Tao 2019)

Let \mathcal{H} be an infinite-dimensional Hilbert space. Then, for any $\varepsilon \in (0, 1/2)$, there exist operators $A, B \in \mathcal{B}(\mathcal{H})$ such that

$$||[A, B] - I|| \le \varepsilon$$
 and $||A|| \cdot ||B|| = O(\ln^5 \frac{1}{\varepsilon}).$

Tao's order analog (Drnovšek, K. 2025)

There exist positive operators $A, B \colon \ell^2 \to \ell^2$ such that [A, B] = I + N, where N is a nilpotent operator of nil-index 3. Furthermore, if $\varepsilon \in (0,1)$, then A and B can be chosen in such a way that $\|A\| = O(\varepsilon^{-3})$, $\|B\| = O(\varepsilon^{-3})$ and $\|N\| = O(\varepsilon)$.

Theorem (Tao 2019)

Let $\mathcal H$ be an infinite-dimensional Hilbert space. Then, for any $\varepsilon \in (0,1/2)$, there exist operators $A, B \in \mathcal B(\mathcal H)$ such that

$$||[A,B]-I|| \le \varepsilon$$
 and $||A|| \cdot ||B|| = O(\ln^5 \frac{1}{\varepsilon}).$

Tao's order analog (Drnovšek, K. 2025)

There exist positive operators $A, B \colon \ell^2 \to \ell^2$ such that [A, B] = I + N, where N is a nilpotent operator of nil-index 3. Furthermore, if $\varepsilon \in (0,1)$, then A and B can be chosen in such a way that $\|A\| = O(\varepsilon^{-3})$, $\|B\| = O(\varepsilon^{-3})$ and $\|N\| = O(\varepsilon)$.

Weiland-type result (Drnovšek, K. 2025)

Let a and b be elements of a unital ordered normed algebra \mathcal{A} with a normal algebra cone \mathcal{A}^+ . If $[a,b]\geq e$, then neither a nor b is either positive or negative.

- Let \mathcal{H} be a Hilbert lattice and A a bounded operator on \mathcal{H} .
- An operator of the form $A^*A AA^*$ is a self-commutator.
- If A is positive, then A^* is positive (in the sense of Banach lattices).
- Radjavi (1966): a self-adjoint operator A on a separable Hilbert space is a self-commutator if and only if zero lies within the convex hull of the essential spectrum of A.

20 / 27

- Let \mathcal{H} be a Hilbert lattice and A a bounded operator on \mathcal{H} .
- An operator of the form $A^*A AA^*$ is a self-commutator.
- If A is positive, then A^* is positive (in the sense of Banach lattices).
- Radjavi (1966): a self-adjoint operator A on a separable Hilbert space is a self-commutator if and only if zero lies within the convex hull of the essential spectrum of A.

What can be said about a positive self-commutator $A^*A - AA^* \ge 0$ of a positive operator A?

- Let \mathcal{H} be a Hilbert lattice and A a bounded operator on \mathcal{H} .
- An operator of the form $A^*A AA^*$ is a self-commutator.
- If A is positive, then A^* is positive (in the sense of Banach lattices).
- Radjavi (1966): a self-adjoint operator A on a separable Hilbert space is a self-commutator if and only if zero lies within the convex hull of the essential spectrum of A.

What can be said about a positive self-commutator $A^*A - AA^* \ge 0$ of a positive operator A?

Theorem (Drnovšek, K. 202*)

Let A be a positive operator on a Hilbert lattice \mathcal{H} such that the self-commutator $C := A^*A - AA^*$ is also positive.

- If A is idempotent, then $A^* = A$ and so $A^*A = AA^*$.
- If A is power-compact, then $A^*A = AA^*$.

20 / 27

Theorem (Drnovšek, K. 202*)

Every positive compact central operator on a separable infinite-dimensional Hilbert lattice is a self-commutator of a positive operator.

Theorem (Drnovšek, K. 202*)

Every positive compact central operator on a separable infinite-dimensional Hilbert lattice is a self-commutator of a positive operator.

Why central operators?

- For every normal operator N on a Hilbert space, there exists a measure space (Ω, Σ, μ) and a function $\varphi \in L^{\infty}(\mu)$ such that N is unitarily equivalent to the multiplication operator M_{φ} acting on $L^{2}(\mu)$.
- If μ is σ -finite, then multiplication operators of the form M_{φ} , where $\varphi \in L^{\infty}(\mu)$ are precisely central operators on the Banach lattice $L^{p}(\mu)$ for $1 \leq p < \infty$.

Theorem (Drnovšek, K. 202*)

Every positive compact central operator on a separable infinite-dimensional Hilbert lattice is a self-commutator of a positive operator.

Why central operators?

- For every normal operator N on a Hilbert space, there exists a measure space (Ω, Σ, μ) and a function $\varphi \in L^{\infty}(\mu)$ such that N is unitarily equivalent to the multiplication operator M_{φ} acting on $L^{2}(\mu)$.
- If μ is σ -finite, then multiplication operators of the form M_{φ} , where $\varphi \in L^{\infty}(\mu)$ are precisely central operators on the Banach lattice $L^{p}(\mu)$ for $1 \leq p < \infty$.

Theorem (Drnovšek, K. 202*)

A band projection on ℓ^2 or $L^2[0,1]$ is a self-commutator of a positive operator if and only if its kernel is infinite-dimensional.

Mixed Case

The operator C on a Hilbert lattice $\mathcal{H}=\ell^2\oplus L^2[0,1]$ represented with the 2×2 operator matrix

$$\left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right]$$

is a self-commutator of a positive operator on \mathcal{H} .

Mixed Case

The operator C on a Hilbert lattice $\mathcal{H}=\ell^2\oplus L^2[0,1]$ represented with the 2×2 operator matrix

$$\left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right]$$

is a self-commutator of a positive operator on \mathcal{H} .

There exists a positive isometry $X: \ell^2 \to L^2[0,1] \cong \bigoplus_{n=1}^{\infty} L^2[0,1]$ and a positive self-adjoint operator $Y: L^2[0,1] \to L^2[0,1]$ such that $Y^2 = XX^*$. We define the positive operator Z as the infinite block operator matrix

$$Z = \left[\begin{array}{ccccc} 0 & 0 & 0 & 0 & \dots \\ X & 0 & 0 & 0 & \dots \\ 0 & Y & 0 & 0 & \dots \\ 0 & 0 & Y & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right].$$

We have $[Z^*, Z] = C$.

Is the operator

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & I \end{array}\right]$$

on $\ell^2 \oplus L^2[0,1]$ a self-commutator of a positive operator?

Is the operator

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & I \end{array}\right]$$

on $\ell^2 \oplus L^2[0,1]$ a self-commutator of a positive operator?

There are no positive isometries from $L^2[0,1]$ to $\ell^2!$ (any such positive isometry should be a lattice homomorphism and so ℓ^2 should contain a closed sublatice isomorphic to $L^2[0,1]$ which is impossible as they are all closed linear spans of pairwise disjoint vectors: Bilokopytov and Troitsky 2023).

Is the operator

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & I \end{array}\right]$$

on $\ell^2 \oplus L^2[0,1]$ a self-commutator of a positive operator?

There are no positive isometries from $L^2[0,1]$ to $\ell^2!$ (any such positive isometry should be a lattice homomorphism and so ℓ^2 should contain a closed sublatice isomorphic to $L^2[0,1]$ which is impossible as they are all closed linear spans of pairwise disjoint vectors: Bilokopytov and Troitsky 2023).

Theorem (Drnovšek, K. 202*)

Every positive central operator C on an infinite-dimensional separable Hilbert lattice is a sum of two positive self-commutators of positive operators.

Problem

Determine the dimension of the algebra generated by $n \times n$ matrices A and B?

Problem

Determine the dimension of the algebra generated by $n \times n$ matrices A and B?

- The dimension of a commutative algebra of $n \times n$ matrices is at most $\lfloor \frac{n^2}{4} \rfloor + 1$. (Schur 1905)
- The dimension of the unital algebra generated by commuting $n \times n$ matrices A and B is of dimension at most n. (Gerstenhaber 1962)

Problem

Determine the dimension of the algebra generated by $n \times n$ matrices A and B?

- The dimension of a commutative algebra of $n \times n$ matrices is at most $\lfloor \frac{n^2}{4} \rfloor + 1$. (Schur 1905)
- The dimension of the unital algebra generated by commuting $n \times n$ matrices A and B is of dimension at most n. (Gerstenhaber 1962)

Problem

Let A and B be positive matrices with a positive commutator AB - BA. Determine the upper bound for the dimension of the unital algebra generated by A and B?

- The upper bound is $\frac{n(n+1)}{2}$.
- If A or B is irreducible, then the upper bound is n.

25 / 27

- The upper bound is $\frac{n(n+1)}{2}$.
- If A or B is irreducible, then the upper bound is n.

Special cases

- Let B be the diagonal matrix with strictly increasing positive diagonal entries and let $A = J_n$ be the $n \times n$ Jordan block. Then the upper bound $\frac{n(n+1)}{2}$ is attained;
- All dimensions up to *n* are attainable $(A = J_k, B = I)$.
- $B = C_n$ is a cycle of order $n \Rightarrow$ the algebra is n-dimensional;
- B = P is a permutation matrix ⇒ AP = PA and the dimension is at most n;
- All dimensions between n and $\frac{n(n+1)}{2}$ are attainable (Kolegov 2021)

Let E and F be positive idempotent operators on a vector lattice X with a positive commutator EF — FE. Then the upper bound for the dimension of the unital algebra generated by E and F is

- 4 if (E and E*) or (F and F*) are strictly positive and X is a Banach lattice.
- 6 if E or F is strictly positive or (X is a Banach lattice and E* or F*
 is strictly positive);
- 9 if X has the projection property and F is order continuous.

Let E and F be positive idempotent operators on a vector lattice X with a positive commutator EF-FE. Then the upper bound for the dimension of the unital algebra generated by E and F is

- 4 if $(E \text{ and } E^*)$ or $(F \text{ and } F^*)$ are strictly positive and X is a Banach lattice.
- 6 if E or F is strictly positive or (X is a Banach lattice and E* or F* is strictly positive);
- 9 if X has the projection property and F is order continuous.
- If the semigroup generated by E and F consists of idempotent matrices, then the upper bound for the dimension is 7. (Drnovšek 2018)
- If E in F are positive idempotent operators on a Banach lattice with a positive commutator, then upper bound for the dimension of the unital algebra generated by E and F is 9.

Example

Consider the idempotents

Then EF - FE is positive and

$$\{I, E, F, EF, [E, F], [E, F]E, [E, F]F, [E, F]EF, [E, F]^2\}$$

and is a linearly independent set of generators for the unital algebra generated by E af F.