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L-functional analysis

L-functional analysis is functional analysis but with R (or C)
replaced by a real (or complex) Dedekind complete unital f -algebra
L.

Why is this useful/interesting?

Why replace the scalars with a Dedekind complete unital
f -algebra?
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Probability theory in vector lattices

Invented in 2000’s in South Africa

E (replacing L1) is a Dedekind complete vector lattice, e
(replacing 1) weak unit

T : E → E conditional expectation: linear, positive, order
continuous, Te = e, R(T ) Dedekind complete

Extend T : R(T ) becomes universally complete

R(T ) admits a very nice f -algebra multiplication

E becomes an R(T )-module

Define ∥·∥p : E → R(T ) by ∥f ∥p := T (|f |p)
1
p

Define Lp(T ) as those f for which ∥f ∥p exists

Azouzi, Kalauch, Kuo, Watson 2023: Completeness of Lp(T ),
Riesz Representation Theorem for L2(T )
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Kaplansky-Hilbert modules

An abelian AW*-algebra is a special abelian C*-algebra:
Dedekind complete CC(K ) (i.e., K Stonean)

Kaplansky, 1953: initiated study of Kaplansky-Hilbert modules
(KH-modules): Hilbert spaces H with C replaced by an abelian
AW*-algebra A ∼= CC(K ).

H is an A-module

⟨·, ·⟩ : H × H → A, positive definite, A-sesquilinear

Some completeness assumption

Kaplansky used KH-modules to characterize type I AW*-algebras.

Edeko, Haasse, Kreidler (2024): A Decomposition Theorem
for Unitary Group Representations on Kaplansky-Hilbert
Modules and the Furstenberg-Zimmer Structure Theorem

Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



Connection between those two theories?

In probability, scalars: R(T ), universally complete VL

In KH-modules, scalars: A ∼= CC(K ), abelian AW*-algebra

Both are (real/complex) Dedekind complete unital f-algebras!

Our goal: unify both theories by setting up a general theory of
functional analysis, replacing R (or C) by a real (or complex)
Dedekind complete unital f-algebra L.

By representation theory we obtain

C (K ) ⊆ L ⊆ C∞(K )

CC(K ) ⊆ LC ⊆ C∞
C (K )

In this talk we assume L is real (but our theory also covers the
complex case).
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Comparing L with R

From now on L is a fixed Dedekind complete unital f-algebra.
Notation: λ, µ, 1 ∈ L.
L plays the role of an partially ordered ring replacing R

R L
Field Commutative ring

0 ̸= r is invertible 0 ̸= λ often not invertible
Totally ordered Partially (lattice) ordered

metric/Dedekind complete Dedekind complete

real vector space = R-module: replaced by L-module

Example

A Dedekind complete vector lattice E is an Orth(E )-module

normed space: replaced by L-normed space
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L-normed spaces

Definition

An L-normed space (X , ∥·∥) is an L-module X equipped with a
map ∥·∥ : X → L+ satisfying (λ ∈ L, x , y ∈ X )

∥λx∥ = |λ| ∥x∥
∥x + y∥ ≤ ∥x∥+ ∥y∥
∥x∥ = 0 ⇔ x = 0.

An L-normed space is an example of a lattice normed space,
which goes back to Kantorovich (1936), who investigated mostly
the non-module case.

Example

(L, | · |) is an L-normed space
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Convergence

We define xα → x to mean that ∥xα − x∥ → 0 in L, so we need a
notion of convergence in L. Order convergence is used in both
motivating examples.

Notation: A ↘ 0 means that A ⊆ L with inf A = 0.

Definition

Let X be an L-normed space, (xα) a net in X , and x ∈ X . Then
we define xα → x to mean that

∃E ↘ 0 ∀ε ∈ E ∃α0 ∀α ≥ α0 ∥xα − x∥ ≤ ε.

Similar to convergence in R, except E depends on the net (xα).
Note that notion of convergence in X is not topological! It turns
X into a convergence space.
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Completeness

Definition

A net (xα) in an L-normed space X is Cauchy if xα − xβ → 0. X is
complete or an L-Banach space if every Cauchy net converges.

The Dedekind completeness of L is equivalent to the completeness
of (L, | · |).

Thus the Dedekind completeness assumption on L is necessary.
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ℓ∞(S ,L)

Let S be a nonempty set.

Example

ℓ∞(S ,L) := {f : S → L : ∃M ∈ L+ ∀s ∈ S |f (s)| ≤ M}

Defining (λf )(s) := λf (s) turns ℓ∞(S ,L) into an L-module, and
for f ∈ ℓ∞(S ,L), define (using Dedekind completeness of L)

∥f ∥∞ := sup
s∈S

|f (s)|.

Theorem

ℓ∞(S ,L) is an L-Banach space.

Proof is very similar to the classical case.

We prove similar results for L-valued ℓp and c0.
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Operators

X , Y L-normed spaces, T ∈ HomL(X ,Y ).

Definition

T is bounded if ∃M ∈ L+ ∀x ∈ X ∥Tx∥Y ≤ M ∥x∥X .

∥T∥ := inf{M ∈ L+ : ∀x ∈ X ∥Tx∥ ≤ M ∥x∥}

B(X ,Y ) := {T ∈ HomL(X ,Y ) : T is bounded}.

Theorem

B(X ,Y ) is an L-normed space satisfying ∥TS∥ ≤ ∥T∥ ∥S∥ which
is complete whenever Y is complete.

Proof is very similar to the classical case.
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Idempotents and disjointness

Let P be the Boolean algebra of idempotents in L:

Definition

P := {π ∈ L : π2 = π}

For π ∈ P, πc := 1− π ∈ P.

P consists of components (fragments) of 1 ∈ L
The band projections in L are λ 7→ πλ for π ∈ P
In L: λ ⊥ µ ⇔ ∃π ∈ P : λ = πλ and µ = πcµ

This disjointness structure can be transferred to L-modules, even
though L-modules (like vector spaces) need not be ordered:

Definition

Let X be an L-module. We define x , y ∈ X to be disjoint
separated if there is π ∈ P with x = πx and y = πcy .
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Definition

Let X be an L-module. We define x , y ∈ X to be disjoint
separated if there is π ∈ P with x = πx and y = πcy .

The L-module X = L2 has two additional structures:

L-vector lattice: (λ1, λ2) ∨ (µ1, µ2) = (λ1 ∨ µ1, λ2 ∨ µ2)

L-inner product space: ⟨(λ1, λ2), (µ1, µ2)⟩ = (λ1µ1, λ2µ2)

Let x , y ∈ X .

x , y separated ⇒ |x | ∧ |y | = 0 ⇒ ⟨x , y⟩ = 0

⟨(1, 1), (1,−1)⟩ = 0 but |(1, 1)| ∧ |(1,−1)| ≠ 0

(1, 0) ∧ (0, 1) = 0 but they are not separated

So for L-vector lattices, separatedness is different from disjointness
(and they are also different from orthogonality for L-inner product
modules).

Is this notion of separatedness useful?
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Let X and Y be L-modules. A map φ : X → Y is
P-homogeneous if φ(πx) = πφ(x) for all π ∈ P.

Lemma

If φ : X → Y is P-homogeneous and x and y are separated, then

φ(x + y) = φ(x) + φ(y).

Proof.

Pick π ∈ P with πx = x and πcy = y , then πcx = 0 and πy = 0

φ(x + y) = (π + πc)φ(x + y) = πφ(x + y) + πcφ(x + y)

= φ(πx + πy) + φ(πcx + πcy)

= φ(πx) + φ(πcy)

= φ(x) + φ(y)

So P-homogeneous maps are additive on separated elements. Is
that useful?
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The norm is P-homogeneous, so for separated x and y in an
L-normed space:

∥x + y∥ = ∥x∥+ ∥y∥

So an L-normed space is somewhat similar to an AL-space.

Thus, if π ∈ P, then

X = πX ⊕1 π
cX .

This is cute but maybe not that useful. However...
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Hahn-Banach

φ : X → L is sublinear if φ(λx) = λφ(x) and
φ(x + y) ≤ φ(x) + φ(y) for λ ∈ L+ and x , y ∈ X .

Theorem

Let X be a real L-module, Y ⊆ X submodule, f ∈ HomL(Y ,L),
φ : X → L sublinear with f (y) ≤ φ(y) for all y ∈ Y . Then there
exists an F ∈ homL(X ,L) extending f with F (x) ≤ φ(x) for all
x ∈ X.

Classical proof relies on the fact that if λ ̸= 0, then
(λ is invertible) and (λ > 0 or λ < 0). Neither hold in L.

One can approximating λ ̸= 0 by invertibles

One can write λx = λ+x −λ−x and a crucial step of the proof
is to use the additivity of φ on the separated λ+x and λ−x

Is L-Hahn-Banach useful?
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Corollary

Let X be an L-normed space. Then X ∗ := B(X ,L) separates the
points of X , and J : X → X ∗∗ is isometric.

Corollary

The completion of X can be defined as J(X ) in X ∗∗.

This circumvents set-theoretic issues with having to consider
equivalence classes of Cauchy nets.
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Let X be an L-normed space.

Definition

For x ∈ X , the support πx ∈ P of x is defined by

πx := inf{π ∈ P : πx = x} = min{π ∈ P : πx = x}.

The last equality need not hold in non-normed L-modules

x and y are separated ⇔ πx ∧ πy = 0

Definition

For an L-normed space X , define the support of X

πX := sup
x∈X

πx ∈ P.

πX is the smallest idempotent acting as 1 on X .
In general there is no x ∈ X with ∥x∥ = πX , but...
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Theorem

Let X be an L-Banach space. Then there is an x ∈ X with
∥x∥ = πX

Proof is the same as the proof for KH-modules from Edeko,
Haasse, Kreidler (2024).

Proof.

Define x ⪯ y to mean x = πxy . If X = L, then λ ⪯ µ precisely
when λ is a fragment (component) of µ. In 2020, Mykhaylyuk,
Pliev, and Popov started studying ⪯ on vector lattices (therein
called ’lateral order’).

Consider S = {x ∈ X : ∥x∥ ∈ P}; we want to show that S has a
⪯-maximal element x . Let K be a chain in S . Indexed by itself, K
turns out to be a Cauchy net, and its limit turns out to be an
upper bound for K . By Zorn, S has a maximal element x which
turns out to satisfy ∥x∥ = πX .

Is this useful?

Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



Theorem

Let X be an L-Banach space. Then there is an x ∈ X with
∥x∥ = πX

Proof is the same as the proof for KH-modules from Edeko,
Haasse, Kreidler (2024).

Proof.

Define x ⪯ y to mean x = πxy . If X = L, then λ ⪯ µ precisely
when λ is a fragment (component) of µ. In 2020, Mykhaylyuk,
Pliev, and Popov started studying ⪯ on vector lattices (therein
called ’lateral order’).
Consider S = {x ∈ X : ∥x∥ ∈ P}; we want to show that S has a
⪯-maximal element x . Let K be a chain in S . Indexed by itself, K
turns out to be a Cauchy net, and its limit turns out to be an
upper bound for K . By Zorn, S has a maximal element x which
turns out to satisfy ∥x∥ = πX .

Is this useful?
Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



L-Hilbert spaces

Let H be an L-module.

Definition

An inner product is a map ⟨·, ·⟩ : H × H → L satisfying

⟨x , x⟩ ∈ L+, and ⟨x , x⟩ = 0 ⇔ x = 0

⟨λx + µy , z⟩ = λ ⟨x , z⟩+ µ ⟨y , z⟩
⟨x , y⟩ = ⟨y , x⟩

Note that ∥x∥ :=
√

⟨x , x⟩ turns H into an L-normed space; if it is
complete, H is called an L-Hilbert space.

If S ⊆ H then the orthogonal complement S⊥ ⊆ H is closed and
hence complete.

Does H have an orthonormal basis?
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Suborthonormal basis

Let H be an L-Hilbert space. Note that if πH ̸= 1, there is no
x ∈ H with ∥x∥ = 1.

Definition

S ⊆ H is a suborthonormal basis if ⟨x , y⟩ = 0 and
⟨x , x⟩ ∈ P \ {0} for all x ̸= y ∈ S , and S⊥ = {0}
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Theorem

Let H be an L-Hilbert space. Then there is an ordinal γ and a
suborthonormal basis (bα)α∈γ of H such that α 7→ ∥bα∥ is
decreasing.

Recall that for each L-Banach X space there is an x ∈ X with
maximal idempotent norm (∥x∥ = πX ); in particular this holds for
closed subspaces of an L-Hilbert space.

Proof.

Pick a b0 with ∥b0∥ = πH . For 0 ̸= β ∈ γ, by Transfinite Recursion
pick bβ in Hβ := {bα : α < β}⊥ with ∥bβ∥ = πHβ

(if Hβ ̸= {0}).
Since Hβ is decreasing, β 7→ ∥bβ∥ is decreasing. By a cardinality
argument this process must stop at some ordinal γ when
{bα : α < γ}⊥ = {0}.

This is used to prove an ℓ2-representation theorem for L-Hilbert
spaces.
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Every L-Hilbert space is a direct sum of ℓ2-spaces taking values
into disjoint parts of L.

Theorem

Let H be an L-Hilbert space. Then there is a disjoint collection of
idempotents (πi )i∈I in L and sets (Si )i∈I such that

H ∼=
⊕
i∈I

ℓ2(Si , πiL)

The π′
i s correspond to the jumps in α 7→ ∥bα∥ from the previous

theorem.
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Conclusion and prospects

L-functional analysis is a nice theory, simultaneously generalizing
the basic setup of KH-modules and parts of probability in vector
lattices.

Some related work:

Jiang, van der Walt, W.: L-valued integration

Zhang, Yan, Liu: L-Bochner spaces w.r.t. scalar-values
measures (arxiv)

Chamberlain: L-vector lattices
Future work:

Generalize the rest of functional analysis to L-functional
analysis;

Find a nice application.
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Thank you for your attention!
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