Banach lattices of positively homogeneous functions induced by a Banach space

Niels Laustsen

Lancaster University, UK

Positivity XII

2nd June 2025

Joint work with Pedro Tradacete (ICMAT, Spain)

Our "universe": positively homogeneous functions on a dual Banach space

Throughout, E will be a real Banach space, with (continuous) dual E^* .

We work within the vector lattice of positively homogeneous functions on E^* :

$$H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \text{ for } \lambda \in [0, \infty) \text{ and } x^* \in E^*\}.$$

Reason: We are interested in vector lattices generated by the evaluation maps

$$\delta_x \colon E^* \to \mathbb{R}, \quad x^* \mapsto \langle x, x^* \rangle \qquad (x \in E).$$

They are linear, so vector lattice combinations of them are positively homogeneous.

Simple examples of $H[E] = \{f : E^* \to \mathbb{R} : f \text{ is positively homogeneous}\}$

Recall: E is a real Banach space with dual E^* .

Definition.

$$S_{E^*} := \{x^* \in E^* : \|x^*\| = 1\} \quad \text{and} \quad \mathbb{R}^{S_{E^*}} := \{f : S_{E^*} o \mathbb{R}\}.$$

Observation. The restriction mapping

$$R\colon H[E] \to \mathbb{R}^{S_{E^*}}, \quad f \mapsto f \upharpoonright_{S_{E^*}},$$

is a lattice isomorphism (provided $E \neq \{0\}$).

Low-dimensional examples.

- For $E = \{0\}$, we have $E^* = \{0\}$, so $H[\{0\}] = \{0\}$.
- ▶ For $E = \mathbb{R}$, we have $E^* = \mathbb{R}$, so $S_{E^*} = \{\pm 1\}$, and hence

$$H[\mathbb{R}] = \{ f : \mathbb{R} \to \mathbb{R} : f(\lambda) = \lambda f(1) \text{ and } f(-\lambda) = \lambda f(-1) \text{ for } \lambda \in [0, \infty) \}$$

 $\cong \mathbb{R}^2$.

▶ For $E = \ell_2^2$, we have $E^* = \ell_2^2$, so $S_{E^*} = S^1$ (= {(s, t) ∈ $\mathbb{R}^2 : s^2 + t^2 = 1$ }); that is, $H[\ell_2^2] = \mathbb{R}^{S^1}$ is already huge!

Finding a smaller universe: the Banach lattice $H^p[E]$

Let $1 \leqslant p \leqslant \infty$ and $n \in \mathbb{N}$.

Definition. The weak *p*-summing norm of an *n*-tuple $(x_j^*)_{j=1}^n \in (E^*)^n$ is the operator norm of the operator

$$E \to \ell_p^n, \quad x \mapsto (\langle x, x_j^* \rangle)_{j=1}^n;$$

that is,

$$\|(x_j^*)_{j=1}^n\|_{p,\mathsf{weak}} := \sup_{\|x\| \leqslant 1} \left(\sum_{j=1}^n |\langle x, x_j^* \rangle|^p\right)^{\frac{1}{p}}.$$

Note: $\left(\sum_{j=1}^{n}|t_{j}|^{p}\right)^{\frac{1}{p}}=\max_{1\leqslant j\leqslant n}|t_{j}|$ for $p=\infty$ by convention.

We use it to define, for $f \in H[E]$,

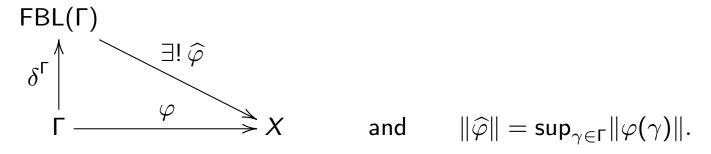
$$\|f\|_{\mathsf{FBL}^p[E]} := \sup \left\{ \left(\sum_{j=1}^n |f(x_j^*)|^p \right)^{rac{1}{p}} : \\ n \in \mathbb{N}, \, (x_j^*)_{j=1}^n \in (E^*)^n, \, \|(x_j^*)_{j=1}^n\|_{p,\mathsf{weak}} \leqslant 1
ight\} \in [0,\infty].$$

Prop. $H^p[E] := \{ f \in H[E] : ||f||_{\mathsf{FBL}^p[E]} < \infty \}$ is a vector sublattice of H[E], and a Banach lattice with respect to the norm $||\cdot||_{\mathsf{FBL}^p[E]}$.

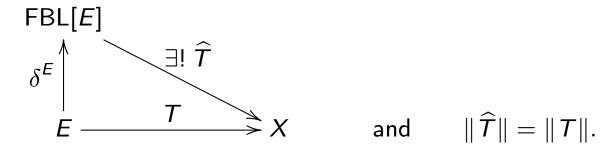
Origin: the **free** *p***-convex Banach lattice** generated by *E*.

Free Banach lattices — a brief introduction

The free Banach lattice generated by a set Γ (De Pagter, Wickstead 2015): There is a Banach lattice $FBL(\Gamma)$ and a bounded map $\delta^{\Gamma} \colon \Gamma \to FBL(\Gamma)$ such that, for every Banach lattice X and every bounded map $\varphi \colon \Gamma \to X$, there is a unique lattice homomorphism $\widehat{\varphi}$ such that



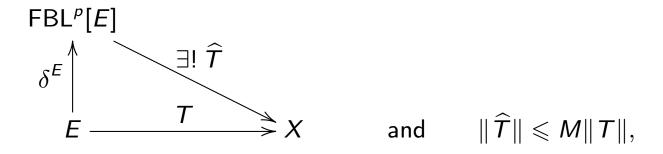
The free Banach lattice generated by a Banach space E (Avilés, Rodríguez, Tradacete 2018): There is a Banach lattice $\mathsf{FBL}[E]$ and a linear isometry $\delta^E \colon E \to \mathsf{FBL}[E]$ such that, for every Banach lattice X and every bounded linear map $T \colon E \to X$, there is a unique lattice homomorphism \widehat{T} such that



Correspondence: $FBL(\Gamma) = FBL[\ell_1(\Gamma)]$.

Free Banach lattices (continued)

The free p-convex Banach lattice generated by a Banach space E, for $1 \le p \le \infty$ (Jardón-Sánchez, L, Taylor, Tradacete, Troitsky 2022): There is a p-convex Banach lattice $\mathsf{FBL}^p[E]$ and a linear isometry $\delta^E \colon E \to \mathsf{FBL}^p[E]$ such that, for every p-convex Banach lattice X and every bounded linear map $T \colon E \to X$, there is a unique lattice homomorphism \widehat{T} such that



where M denotes the p-convexity constant of X.

Correspondence: $FBL[E] = FBL^{1}[E]$.

Key result: $FBL^p[E]$ is a function lattice; very useful in applications.

Construction of $FBL^p[E]$ for $1 \leq p \leq \infty$

Recall: For $x \in E$, $\delta_x \colon E^* \to \mathbb{R}$ is the evaluation map:

$$\delta_{x}(x^{*}) = \langle x, x^{*} \rangle.$$

It is (positively) homogeneous and satisfies

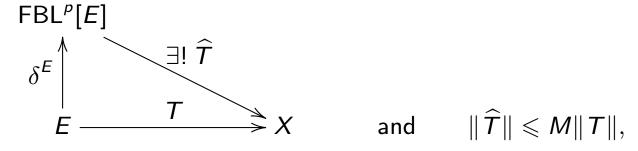
$$\|\delta_{\mathsf{x}}\|_{\mathsf{FBL}^p[E]} = \|\mathsf{x}\|,$$

so $\delta_x \in H^p[E]$.

Def'n. FBL^p[E] is the closed vector sublattice of $H^p[E]$ gen. by $\{\delta_x : x \in E\}$,

$$\delta^E \colon E \to \mathsf{FBL}^p[E], \quad x \mapsto \delta_x.$$

Theorem (J-S,L,T,T,T). (FBL^p[E], δ^E) is the free p-convex Banach lattice generated by E; that is, FBL^p[E] is a p-convex Banach lattice and δ^E a linear isometry; and for every p-convex Banach lattice X and every bounded linear map $T: E \to X$, there is a unique lattice homomorphism \widehat{T} such that



where M denotes the p-convexity constant of X.

Finite-dimensional Banach spaces

Recall:

- \triangleright $S_{E^*} := \{x^* \in E^* : ||x^*|| = 1\},$
- the restriction mapping

$$R\colon H[E] \to \mathbb{R}^{S_{E^*}}, \quad f \mapsto f \upharpoonright_{S_{E^*}},$$

is a lattice isomorphism (provided $E \neq \{0\}$).

Prop. Let *E* be a non-zero, finite-dimensional Banach space and $1 \le p \le \infty$. Then

$$R(\mathsf{FBL}^p[E]) = C(S_{E^*})$$
 and $R(H^p[E]) = \ell_\infty(S_{E^*})$.

Obs.
$$C(S_{E^*}) = \ell_{\infty}(S_{E^*}) \iff S_{E^*} \text{ is discrete } \iff \dim E \leqslant 1.$$

Corollary. FBL^{$$\rho$$}[E] = H^{ρ} [E] \iff dim $E \leqslant 1$.

Aim: Explore the "gap" between $FBL^p[E]$ and $H^p[E]$.

An intermediate ideal & characterizations of finite-dimensionality

Recall:

- E is a real Banach space,
- ▶ $H[E] := \{ \text{positively homogeneous functions } E^* \to \mathbb{R} \},$
- ▶ for $x \in E$, $\delta_x : E^* \to \mathbb{R}$ is the evaluation map: $\delta_x(x^*) = \langle x, x^* \rangle$,
- ▶ $FBL^p[E]$ is the closed vector sublattice of $H^p[E]$ gen. by $\{\delta_x : x \in E\}$.

Definition. I[E] is the order ideal of H[E] generated by $\{\delta_x : x \in E\}$.

Obs.

$$I[E] = \left\{ f \in H[E] : |f| \leqslant \bigvee_{j=1}^{n} |\delta_{x_j}| \text{ for some } n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in E \right\}$$
 $\subseteq H^p[E].$

Theorem (L, Tradacete). Let $1 \le p < \infty$. The following are equivalent for a Banach space E:

- ightharpoonup dim $E<\infty$,
- $ightharpoonup I[E] = H^p[E],$
- ightharpoonup I[E] is closed in $H^p[E]$,
- ▶ $FBL^p[E] \subseteq I[E]$.

An intermediate vector lattice & more characterizations of dim $E < \infty$

Recall: $B_{E^*} := \{x^* \in E^* : ||x^*|| \leq 1\}$ is weak*-compact (Banach–Alaoglu).

Definition. $H_{w^*}[E] := \{ f \in H[E] : f \upharpoonright_{B_{E^*}} \text{ is weak*-continuous} \}.$

Obs.

- $ightharpoonup H_{w^*}[E]$ is a sublattice of H[E],
- \vdash $H_{w^*}[E] \cap H^p[E]$ is closed in $(H^p[E], \|\cdot\|_{\mathsf{FBL}^p[E]})$,
- ▶ $FBL^p[E] \subseteq H_{w^*}[E]$.

Theorem (continued; L, Tradacete). Let $1 \le p < \infty$. The following are equivalent for a Banach space E:

- ightharpoonup dim $E<\infty$,
- $ightharpoonup I[E] = H^p[E],$
- \blacktriangleright I[E] is closed in $H^p[E]$,
- ightharpoonup FBL^p[E] $\subseteq I[E]$,
- ightharpoonup FBL $^p[E] = H_{w^*}[E]$,
- $ightharpoonup H_{w^*}[E] \subseteq H^p[E],$
- $ightharpoonup H_{w^*}[E] \subseteq I[E],$
- ▶ $I[E] \cap H_{w^*}[E]$ is closed in $H^p[E]$.

Corollary. For $1 \le p < \infty$ and $2 \le \dim E < \infty$,

$$C(S_{E^*}) \cong FBL^p[E] = H_{w^*}[E] \subsetneq I[E] = H^p[E] \cong \ell_{\infty}(S_{E^*}).$$

A question

Recall:

- ▶ $\mathsf{FBL}^p[E]$ is the closed vector sublattice of $H^p[E]$ gen. by $\{\delta_x : x \in E\}$,
- ▶ I[E] is the ideal of H[E] generated by $\{\delta_x : x \in E\}$, and
- $ightharpoonup H_{w^*}[E] := \{ f \in H[E] : f \upharpoonright_{B_{F^*}} \text{ is weak*-continuous} \}.$

Definition. $I_{w^*}[E] := I[E] \cap H_{w^*}[E]$.

Recall: dim $E < \infty \iff I_{w^*}[E] = H_{w^*}[E] \iff I_{w^*}[E]$ is closed in $H^p[E]$.

Hence, for dim $E = \infty$, we consider its closure $\overline{I_{w^*}[E]}$ in $(H^p[E], \|\cdot\|_{\mathsf{FBL}^p[E]})$.

Question. When is $FBL^p[E] = \overline{I_{w^*}[E]}$?

Conjecture. dim $E < \infty \iff FBL^p[E] = \overline{I_{w^*}[E]}$.

Recall: dim $E < \infty \iff \mathsf{FBL}^p[E] = H_{w^*}[E]$.

This verifies " \Longrightarrow " of the conjecture.

An "almost-proof" of the conjecture

Recall:

- $I_{w^*}[E] := I[E] \cap H_{w^*}[E]$, where
- ▶ I[E] is the ideal of H[E] generated by $\{\delta_x : x \in E\}$, and
- $\blacktriangleright \ \dim E < \infty \implies \ \mathsf{FBL}^p[E] = \overline{I_{w^*}[E]}.$
- ▶ Question: is ← true?

Theorem (L, Tradacete). Let $1 \le p < \infty$ and E a Banach space which admits an ∞ -dimensional, separable quotient space. Then

$$I_{w^*}[E] \nsubseteq \mathsf{FBL}^p[E],$$

SO

$$\mathsf{FBL}^p[E] \subsetneq \overline{I_{w^*}[E]}.$$

(In)famous open question. Does every ∞ -dimensional Banach space admit an ∞ -dimensional, separable quotient space?

Lattice homomorphisms and positively homogeneous maps

Recall: The weak *p*-summing norm of $(x_i^*)_{i=1}^n \in (E^*)^n$ is

$$\|(x_j^*)_{j=1}^n\|_{p,\mathsf{weak}} := \sup_{\|x\| \leqslant 1} \left(\sum_{j=1}^n |\langle x, x_j^* \rangle|^p \right)^{\frac{1}{p}}.$$

Lemma (L, Tradacete). Let $1 \le p < \infty$, E and F Banach spaces, and $\Phi: F^* \to E^*$ a positively homogeneous map.

The composition operator

$$C_{\Phi} \colon f \mapsto f \circ \Phi$$

defines a lattice homomorphism $C_{\Phi}: H[E] \to H[F]$.

Suppose that

$$\|\Phi\|_{p} := \sup \left\{ \left\| \left(\Phi(y_{j}^{*})\right)_{j=1}^{m} \right\|_{p,\mathsf{weak}} : \\ m \in \mathbb{N}, \, (y_{j}^{*})_{j=1}^{m} \in (F^{*})^{m}, \, \|(y_{j}^{*})_{j=1}^{m}\|_{p,\mathsf{weak}} \leqslant 1 \right\} < \infty.$$

Then $C_{\Phi}(H^p[E]) \subseteq H^p[F]$, and the restriction

$$C_{\Phi}: (H^p[E], \|\cdot\|_{\mathsf{FBL}^p[E]}) \to (H^p[F], \|\cdot\|_{\mathsf{FBL}^p[F]}), \quad f \mapsto f \circ \Phi,$$

is bounded with norm $\|\Phi\|_p$.

Lemma (continued)

Recall: Let $1 \le p < \infty$, E and F Banach spaces, and $\Phi: F^* \to E^*$ a positively homogeneous map.

- $ightharpoonup C_{\Phi} \colon H[E] o H[F], \ f \mapsto f \circ \Phi$, is a lattice homomorphism.
- Suppose that

$$\|\Phi\|_{
ho} := \sup \Big\{ ig\| ig(\Phi(y_j^*)ig)_{j=1}^m ig\|_{
ho, \mathsf{weak}} : \ m \in \mathbb{N}, \, (y_j^*)_{j=1}^m \in (F^*)^m, \, \|(y_j^*)_{j=1}^m\|_{
ho, \mathsf{weak}} \leqslant 1 \Big\} < \infty.$$

Then the restriction

$$C_{\Phi}: (H^{p}[E], \|\cdot\|_{\mathsf{FBL}^{p}[E]}) \to (H^{p}[F], \|\cdot\|_{\mathsf{FBL}^{p}[F]}), \quad f \mapsto f \circ \Phi,$$

is bounded with norm $\|\Phi\|_p$.

▶ Suppose in addition that Φ _{B_{F*}} is weak*-to-weak* continuous. Then

$$C_{\Phi}(H_{w^*}[E]) \subseteq H_{w^*}[F].$$

Question: Is $C_{\Phi}(I_{w^*}[E]) \subseteq \overline{I_{w^*}[F]}$?

Example. Let E and F be Banach spaces, where $E \neq \{0\}$ and F admits an ∞ -dimensional, separable quotient space. Then there is a pos. homogeneous map $\Phi \colon F^* \to E^*$ with $\|\Phi\|_p < \infty$ and $\Phi \upharpoonright_{B_{F^*}}$ weak*-to-weak* continuous, but $C_{\Phi}(\mathsf{FBL}^p[E]) \nsubseteq \mathsf{FBL}^p[F]$.

The representation theorem for lattice homomorphisms between FBLs

Theorem (L, Tradacete). Let $T: \mathsf{FBL}^p[E] \to \mathsf{FBL}^p[F]$ be a lattice homomorphism for some $1 \le p < \infty$ and some Banach spaces E and F. Then there is a unique map $\Phi_T: F^* \to E^*$ such that

$$Tf = f \circ \Phi_T$$
 $(f \in FBL^p[E]).$

It is positively homogeneous and satisfies:

- $\|\Phi_T\|_p = \|T\|,$
- $ightharpoonup \Phi_T \upharpoonright_{B_{F^*}}$ is weak*-to-weak* continuous.

Hope: This may help address the **isomorphism problem** for free Banach lattices:

Let E and F be Banach spaces and $1 \leqslant p < \infty$, and suppose that

$$\mathsf{FBL}^p[E] \cong \mathsf{FBL}^p[F]$$
 as Banach lattices.

Is $E \cong F$ as Banach spaces?

The end — thank you!