# Some recent results on mild Riesz\* homomorphisms

Positivity XII Hammamet June 5, 2025

Onno van Gaans



Let X, Y partially ordered vector spaces,  $T: X \to Y$  linear.

#### Definition

- If X, Y vector lattices, T is a Riesz homomorphism if  $\forall a, b \in X$ :  $T(a \lor b) = Ta \lor Tb$ .
- (van Haandel 1993) T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .
- (Buskes-van Rooij 1993) T is a Riesz homomorphism if  $\forall a,b \in X$ :  $T[\{a,b\}^{\mathrm{u}}]^{\mathrm{l}} = \{Ta,Tb\}^{\mathrm{ul}}$ .

 $A^{\mathrm{u}} = \mathrm{set}$  of all upper bounds of A  $A^{\mathrm{l}} = \mathrm{set}$  of all lower bounds of A  $A^{\mathrm{ul}} = \left(A^{\mathrm{u}}\right)^{\mathrm{l}}.$ 

• T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .

Theorem (van Haandel 1993) Let E, F vector lattices, X, Y order dense linear subspace of E, F that generate E, F as vector lattices, resp. Let  $T: X \to Y$  be linear. Then T extends to a lattice homomorphism  $\hat{T}: E \to F$  if and only if T is a Riesz\* homomorphism.

X order dense in E means  $\forall y \in E$ :  $y = \inf\{x \in X : x \ge y\}$ 

X 'generates E as a vector lattice' means that the smallest Riesz subspace of E containing X is E itself.

T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .

Theorem (van Haandel 1993) Let E, F vector lattices, X, Y order dense linear subspace of E, F that generate E, F as vector lattices, resp. Let  $T: X \to Y$  be linear. Then T extends to a lattice homomorphism  $\hat{T}: E \to F$  iff T is a Riesz\* homomorphism.

### In terms of pre-Riesz spaces:

- A partially ordered vector space X is a pre-Riesz space if and only if there exists a vector lattice E and a bipositive linear  $i: X \to E$  such that i[X] is order dense in E and generates E as a vector lattice.
- Such an E is unique (up to isomorphism of vector lattices) and called the Riesz completion of X.
- Each directed Archimedean pov is pre-Riesz.
- Riesz\* homomorphisms are those maps between pre-Riesz spaces that extend to lattice homomorphisms between their Riesz completions.

T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .

Theorem (van Haandel 1993) Let E, F vector lattices, X, Y order dense linear subspace of E, F that generate E, F as vector lattices, resp. Let  $T: X \to Y$  be linear. Then T extends to a lattice homomorphism  $\hat{T}: E \to F$  iff T is a Riesz\* homomorphism.

Theorem (van Haandel 1993) Let X be an order unit space, i.e., an Archimedean partially ordered vector space with an order unit u. Let  $\Sigma = \{\varphi \colon X \to \mathbb{R} \colon \varphi \text{ positive and } \underline{\varphi(u)} = 1\}$ . Then  $\varphi \in \Sigma$  is a Riesz\* homomorphism if and only if  $\varphi \in \overline{\text{ext}\Sigma}$ .

 $\|x\| := \inf\{\lambda \in \mathbb{R}: -\lambda u \le x \le \lambda u\}$  order unit norm on X, weak\* topology on norm dual of X.

Let X, Y partially ordered vector spaces,  $T: X \to Y$  linear.

#### Definition

- If X, Y vector lattices, T is a Riesz homomorphism if  $\forall a, b \in X$ :  $T(a \lor b) = Ta \lor Tb$ .
- (van Haandel 1993) T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .
- (Buskes-van Rooij 1993) T is a Riesz homomorphism if  $\forall a,b \in X$ :  $T[\{a,b\}^{\mathrm{u}}]^{\mathrm{l}} = \{Ta,Tb\}^{\mathrm{ul}}$ .

Question Is it sufficient to consider  $F = \{a, b\}$  in the definition of Riesz\* homomorphism?

No! (Boisen, Hölker, Kalauch, Stennder, vG, 2024)

### mild Riesz\* homomorphisms

T is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ .

Boisen, Hölker, Kalauch, Stennder, vG, 2024:

Let X, Y partially ordered vector spaces,  $T: X \to Y$  linear.

Definition T is a mild Riesz\* homomorphism if  $\forall a, b \in X$ :  $T[\{a, b\}^{\mathrm{ul}}] \subseteq \{Ta, Tb\}^{\mathrm{ul}}$ .

Theorem Let X be a finite dimensional order unit space with a generating polyhedral cone and  $\varphi\colon X\to\mathbb{R}$  linear. Then  $\varphi$  is a mild Riesz\* homomorphism  $\Longleftrightarrow \varphi$  is a Riesz\* homomorphism.

## mild Riesz\* homomorphisms

Boisen, Hölker, Kalauch, Stennder, vG, 2024:

Let X be an Archimedean partially ordered vector space with an order unit u. Let  $\varphi \colon X \to \mathbb{R}$  be a linear functional.

- $\varphi$  is a Riesz\* homomorphism if  $\forall F \subseteq X$  finite nonempty:  $\varphi[F^{\mathrm{ul}}] \subseteq \varphi[F]^{\mathrm{ul}}$ .
- $\varphi$  is a mild Riesz\* homomorphism if  $\forall a, b \in X$ :  $\varphi[\{a, b\}^{\mathrm{ul}}] \subseteq \{\varphi(a), \varphi(b)\}^{\mathrm{ul}}$ .

$$\Sigma := \{ \phi \colon X \to \mathbb{R} \colon \phi \text{ is positive and } \phi(u) = 1 \}$$

Theorem Assume *X* is 3-dimensional.

- If  $\Sigma$  is strictly convex, then  $\varphi$  is a mild Riesz\* homomorphism  $\Longleftrightarrow \varphi$  is positive.
- If  $\Sigma$  is not strictly convex then  $\varphi$  is a mild Riesz\* homomorphism  $\Longleftrightarrow \varphi$  is a Riesz\* homomorphism. Exa: ice cream cone in  $\mathbb{R}^3$ ,  $\Sigma$  is a disk, every  $\varphi \in \Sigma \setminus \mathrm{ext}(\Sigma)$  is mild Riesz\* homomorphism but not Riesz\* homomorphism.

## mild Riesz\* homomorphisms of degree *n*

After Boisen, Hölker, Kalauch, Stennder, vG, 2024: Mainly work by Florian Boisen. Some by Prashand Rambaran and vG.

Let X, Y partially ordered vector spaces,  $T: X \to Y$  linear.

Definition Let  $n \in \mathbb{N}$ . T is a mild Riesz\* homomorphism of degree n if  $\forall F \subseteq X$  with  $1 \le |F| \le n$ :  $T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}}$ . T is an n-mild Riesz\* homomorphism

- If n = 1: T is positive
- If n = 2: T is a mild Riesz\* homomorphism
- T mild Riesz\* hom. of degree n for all  $n \iff T$  Riesz\* hom.
- T mild Riesz\* hom. of degree  $n \Longrightarrow T$  mild Riesz\* hom. of degree k for all k < n

## A geometric approach

### with Prashand Rambaran

K closed cone in  $\mathbb{R}^3$  such that  $(0,0,1) \in \operatorname{int} K$ .  $\varphi((x,y,z)) := z$ . Let  $n \in \mathbb{N}$ .  $\varphi$  mild Riesz\* homomorphism of degree n: for all  $F = \{x_1,\ldots,x_n\}$ :  $\varphi[F^{\operatorname{ul}}] \subseteq \varphi[F]^{\operatorname{ul}}$  (\*) Write  $x_i = (x_i(1),x_i(2),x_i(3))$ . RHS of (\*):  $\varphi[F] = \{x_1(3),\ldots,x_n(3)\}$ , so  $\varphi[F]^{\operatorname{ul}} = \{\max_i x_i(3)\}^l$ . LHS of (\*):  $F^{\operatorname{u}} = (x_1 + K) \cap \cdots \cap (x_n + K)$ , so  $v \in F^{\operatorname{ul}}$  if and only if  $(x_1 + K) \cap \cdots \cap (x_n + K) \subseteq v + K$ . (\*) is most critical for v as high as possible.





# A geometric approach



$$K = \{(n, \eta, z) \in \mathbb{R}^3 : n^2 + \eta^2 \leq z^2, z \geq 0\}$$

$$ice \ cream \ cone$$

$$of \ degree \ z \ on \ dish is strictly come
$$F := \{(0, \eta, z) \in \mathbb{R}^3 : n^2 + \eta^2 \leq z^2, z \geq 0\}$$

$$\phi \{F\}^{ul} = (-\infty, 0].$$

$$\circ \ compute \ corners' \ of \ intersection$$

$$\circ \ show \ they \ are \ contained \ in \ dish \ vith \ rodius \ z - \frac{1}{2}.$$

$$So \ \binom{\eta}{i=1}(n_i+K) \leq \binom{0}{i} + K \ so \binom{0}{0} \in F^{ul}$$

$$so \ \varphi \ not \ mild \ Riesz \ x \ of \ dogree \ q.$$$$

### Florian Boisen

X Archimedean partially ordered vector space with order unit u,  $\Sigma:=\{\varphi\colon X\to\mathbb{R}\colon \varphi \text{ is positive and } \varphi(u)=1\}$  Functional representation: view  $x\in X$  as a function on  $\Sigma$  (or  $\overline{\mathrm{ext}(\Sigma)}$ ):  $\Phi(x)(\varphi):=\varphi(x), \ \Phi\colon X\to \mathrm{C}(\Sigma), \quad x>0\Longleftrightarrow \Phi(x)>0.$ 

### Theorem Let $\sigma \in \Sigma$ and $n \in \mathbb{N}$ . Equivalent are:

- (a)  $\sigma$  is a mild Riesz\* homomorphism of degree n, i.e.  $\forall F \subseteq X$  with
- $1 \le |F| \le n$ :  $\varphi[F^{\mathrm{ul}}] \subseteq \varphi[F]^{\mathrm{ul}}$ .
- (b)  $\forall x_1, \dots, x_n \in X$  and  $v \in X$ :
- $\Phi(v) \leq \bigvee_{i=1}^n \Phi(x_i) \text{ on } \overline{\operatorname{ext}(\Sigma)} \Longrightarrow \Phi(v)(\sigma) \leq \bigvee_{i=1}^n \Phi(x_i)(\sigma).$

### Theorem Let $\sigma \in \Sigma$ and $n \in \mathbb{N}$ . Equivalent are:

- (a)  $\sigma$  is a mild Riesz\* homomorphism of degree n, i.e.  $\forall F \subseteq X$  with  $1 \le |F| \le n$ :  $\varphi[F^{\mathrm{ul}}] \subseteq \varphi[F]^{\mathrm{ul}}$ .
- (b)  $\forall x_1, \dots, x_n \in X$  and  $v \in X$ :

$$\Phi(v) \leq \bigvee_{i=1}^n \Phi(x_i) \text{ on } \overline{\operatorname{ext}(\Sigma)} \Longrightarrow \Phi(v)(\sigma) \leq \bigvee_{i=1}^n \Phi(x_i)(\sigma).$$





Theorem Let X be an order unit space of dimension  $d \in \mathbb{N}$ . Every mild Riesz\* homomorphism of degree  $n \geq d$  is a Riesz\* homomorphism.

#### Conclusion

•  $\forall n > m$ :

Riesz\* homomorphism  $\implies$  mild Riesz\* homomorphism of degree n  $\implies$  mild Riesz\* homomorphism of degree m

- In order unit spaces of dimension d:  $\forall n \geq d$ Riesz\* homomorphisms = mild Riesz\* homomorphisms of degree n
- There exists a mild Riesz\* homomorphism of degree 2 which is not a mild Riesz\* homomorphism of degree 3.

Theorem Let X be an order unit space of dimension  $d \in \mathbb{N}$ . Every mild Riesz\* homomorphism of degree  $n \geq d$  is a Riesz\* homomorphism.

#### Conclusion

•  $\forall n > m$ :

Riesz\* homomorphism  $\implies$  mild Riesz\* homomorphism of degree n  $\implies$  mild Riesz\* homomorphism of degree m

• In order unit spaces of dimension  $d: \forall n \geq d$ 

Riesz\* homomorphisms = mild Riesz\* homomorphisms of degree n

• There exists a mild Riesz\* homomorphism of degree 2 which is not a mild Riesz\* homomorphism of degree 3.

#### THANK YOU! MERCI!

