Positive Operators and Dimension Spectrum of Continued Fraction expansion

Painos Chitanga
Joint work with
Bas Lemmens and Roger Nussbaum

3 June 2025

Continued Fractions Expansion

The continued fraction expansion of an irrational number $x \in [0, 1]$ is given by:

$$x = [a_1, a_2, a_3, \cdots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}},$$

for some $a_i \in \mathbb{N}$ and $i \in \mathbb{N}$.

Example:

$$\sqrt{2} - 1 = [2, 2, 2, \cdots] = \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}.$$

It is also a fixed point in [0,1] of the map $\frac{1}{2+x}$.

Hausdorff Dimension

Given $A \subseteq \mathbb{N}$, denote by J_A the set of all irrational numbers whose continued expansion digits belong to A.

$$J_A = \{x \in (0,1) : x = [a_1, a_2, a_3 \cdots] \text{ with } a_i \in A \text{ for all } i\},$$

These sets have a fractal pattern and their Hausdorff dimension, $\dim_{\mathcal{H}}(J_A)$, have been studied extensively.

For example:

- $ightharpoonup \dim_{\mathcal{H}}(J_{\mathbb{N}})=1$ and
- $ightharpoonup \dim_{\mathcal{H}}(J_{\{1,2\}}) \approx 0.531280506343388.$

Invariant set

 J_A is the invariant set of the **Iterated Function System** $\{\theta_a\colon a\in A\}$ where $\theta_a\colon [0,1]\longrightarrow [0,1]$ defined by

$$\theta_a(x) = \frac{1}{a+x}, \ x \in [0,1].$$

The set J_A satisfies

$$J_A = \bigcup_{a \in A} \theta_a(J_A).$$

Dimension Spectrum

Given $A \subseteq \mathbb{N}$, define the **dimension spectrum** of A as,

$$\mathcal{DS}(A) = {\dim_{\mathcal{H}}(J_F) \colon F \subseteq A}.$$

 \mathbf{Q} : What is the structure of $\mathcal{DS}(A)$ for different choices of A.

- ▶ $0 \in \mathcal{DS}(A)$ as $\dim_{\mathcal{H}}(J_F) = 0$ if |F| = 1 and $\dim_{\mathcal{H}}(J_A) \in \mathcal{DS}(A)$.
- ▶ If *A* is finite, then $\mathcal{DS}(A)$ is finite.
- ▶ If A is infinite, the structure is not well understood, but it is a closed and perfect subset of the interval [0, 1].

Texan Conjecture : $\mathcal{DS}(\mathbb{N}) = [0, 1]$, Kesserbohmer and Zhu, (2006).

The work of Chousionis, Leykekhman and Urbanksi

Recently, $\mathcal{DS}(A)$ of infinite subsets of \mathbb{N} was studied by Chousionis, Leykekhman and Urbanksi (*TAMS*, 2019) for various $A \subseteq \mathbb{N}$.

They showed the **fullness** of $\mathcal{DS}(A)$, i.e.,

$$\mathcal{DS}(A) = [0, \dim_{\mathcal{H}}(J_A)]$$

for:

- lacksquare Arithmetic progression $A_{q,m}=\{q+mn\colon n\in\mathbb{N}\}$ for some $m,q\in\mathbb{N},$
- $M_2 = \{n^2 \colon n \in \mathbb{N}\},\$

 $\underline{\mathbf{Q}}$: Is $\mathcal{DS}(M_q)$ full for $M_q=\{n^q\colon n\in\mathbb{N}\}$ for all $q\in\mathbb{N}$

Set of Powers:

For $P_q=\{q^n\colon n\in\mathbb{N}\}$ with $q\geq 2$. They showed that there exists s(q)>0 such that

$$[0, \max\{s(q), \dim_{\mathcal{H}}(J_{P_q})\}] \subset \mathcal{DS}(A)$$

Question

ls $\mathcal{DS}(P_q)$ full? Note: $1 \notin P_q$

We give a positive answer

Result 1: The set $M_q = \{n^q \colon \in \mathbb{N}\}$

Theorem: The dimension spectrum of M_q satisfies

- $ightharpoonup \mathcal{DS}(M_q)$ is a disjoint union of finitely many nontrivial closed intervals.
- ▶ For $1 \le q \le 5$, $\mathcal{DS}(M_q) = [0, \dim_{\mathcal{H}}(J_{M_q})]$, i.e. it is full.
- ▶ For $q \ge 6$ we have $\dim_{\mathcal{H}}(J_{M_q \setminus \{2^q\}}) < \dim_{\mathcal{H}}(J_{\{1,2^q\}})$ and $\mathcal{DS}(M_q) \cap (\dim_{\mathcal{H}}(J_{M_q \setminus \{2^q\}}), \dim_{\mathcal{H}}(J_{\{1,2^q\}}))$ is empty.
- For $6 \le q \le 8$,

$$\mathcal{DS}(M_q) = [0, \dim_{\mathcal{H}}(J_{M\setminus\{2^q\}})] \cup [\dim_{\mathcal{H}}(J_{\{1,2^q\}}), \dim_{\mathcal{H}}(J_{M_q})]$$

The set $M_q = \{n^q \colon \in \mathbb{N}\}$

Theorem: The dimension spectrum of M_q satisfies

▶ For $q \in \{9, 10, 11\}$ we have that $\dim_{\mathcal{H}}(J_{M_q \setminus \{3^q\}}) < \dim_{\mathcal{H}}(J_{\{1, 2^q, 3^q\}})$ and

$$\begin{split} \mathcal{DS}(M_q) &= [0, \dim_{\mathcal{H}}(J_{M_q \setminus \{2^q\}})] \cup [\dim_{\mathcal{H}}(J_{\{1,2^q\}}), \dim_{\mathcal{H}}(J_{M_q \setminus \{3^q\}})] \\ & \cup [\dim_{\mathcal{H}}(J_{\{1,2^q,3^q\}}), \dim_{\mathcal{H}}(J_{M_q})]. \end{split}$$

 $\underline{\mathbf{Q}}$: Is there an apriori upper bound for the number of intervals? Can we determine the q's where the number of intervals changes?

Result 2: Sets with sub-multiplicative property

Theorem : If $A = \{a_1, a_2, \ldots\} \subset \mathbb{N}$ with $2 \leq a_1 < a_2 < \ldots$ and $a_{n+m} < a_n a_m$ for all $n, m \in \mathbb{N}$, then

$$\mathcal{DS}(A) = [0, \dim_{\mathcal{H}}(J_A)].$$

- ln particular P_a is full. It also implies several results by Chousionis, Leykekhman and Urbanksi.
- For instance, $A_{\text{even}} = 2\mathbb{N}$ has a full dimension spectrum. All sets with an arithmetic progression and $a_1 \geq 2$ are full.
- Using the fact that the n-th prime p_n satisfies

$$n(\ln n + \ln \ln n - 1) < p_n < n(\ln n + \ln \ln n) \quad \text{for } n \ge 6,$$

it can be shown that $p_{n+m} \leq p_n p_m$ for all $n, m \geq 1$, hence $A_{\text{primes}} = \{p_1, p_2, \ldots\}$ also has full dimension spectrum.

Result 3 : The set $P_a^* = P_q \cup \{1\}$

The dimension spectrum of

$$P_q^* = P_q \cup \{1\}, \ \ q \ge 2$$

has a much more complicated structure. More specifically, given q > 2and k > 0. Let

$$F_k = \{1, \dots, q^k\}$$

and for k > 1 set

$$\sigma^k = \dim_{\mathcal{H}}(J_{P_q^*\setminus \{q^k\}})$$
 and $\tau^k = \dim_{\mathcal{H}}(J_{F_k}).$

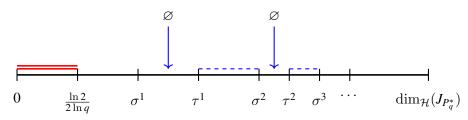
We have the following result.

Theorem For all $q \geq 3$ and $k \geq 1$,

- (i) $\sigma^k < \tau^k$ and $(\sigma^k, \tau^k) \cap \mathcal{DS}(P_a^*)$ is empty.
- (ii) $\mathcal{DS}(P_a^*)$ is nowhere dense in (τ^k, σ^{k+1}) .

For q=2, assertions (i) and (ii) hold for all $k\geq 2$,

Result 4: Non -trivial Interval



Theorem : For $q\in\mathbb{N}$ with $q\geq 2$ we have that the interval $[0,\frac{\ln 2}{2\ln q}]$ is contained in $\mathcal{DS}(P_q^*)$, and $\mathcal{DS}(P_q^*)$ is nowhere dense in

$$\left(\sigma^1, \dim_{\mathcal{H}}(J_{P_q^*})\right].$$

The Perron-Frobenius Operator

Given $F \subset \mathbb{N}$ finite and $s \geq 0$, define $L_{s,F} \colon C([0,1]) \longrightarrow C([0,1])$ by:

$$(L_{s,F}f)(x) = \sum_{a \in F} |\theta'_a(x)|^s f(\theta_a(x)) = \sum_{a \in F} \left(\frac{1}{a+x}\right)^{2s} f\left(\frac{1}{a+x}\right).$$

This defines a positive, bounded linear operator on C([0,1]).

For s > 0, let

$$K_s = \left\{ f \in C([0,1]) : 0 \le f(x) \le f(y)e^{2s|x-y|}, \quad x,y \in [0,1] \right\}.$$

Then

- $ightharpoonup K_s$ is a closed cone in C([0,1]).
- $ightharpoonup L_{s,F}(K_s) \subseteq K_s.$

LINK: Positive Operator and Hausdorff dimension

The following result is due to Falk and Nussbaum (*J. Fractal Geometry*, 2008)

Theorem: For all $F \subset \mathbb{N}$ finite and s > 0,

- ► The operator $L_{s,F}$ has a unique strictly positive eigenvector $v_s \in K_s$ with $L_{s,F}v_s = \lambda_s v_s$ where $\lambda_s > 0$ and $\lambda_s = r(L_{s,F})$.
- ▶ The spectrum $\sigma(L_{s,F}) \subset \mathbb{C}$ satisfies :

$$\sup\left\{\frac{|z|}{\lambda_{s,F}}\colon z\in\sigma(L_{s,F})\setminus\{\lambda_{s,F}\}\right\}<1.$$

- \triangleright v_s is strictly decreasing on [0,1] and $v_s \in K_s$.
- ▶ The map $s \mapsto \lambda_s$ is continuous and strictly decreasing.
- $\lambda_{s_0} = 1$ if and only if $\dim_{\mathcal{H}}(J_F) = s_0$.

Ideas in the proofs

We give an idea of the proof to have an understanding on how we use the spectral properties of $L_{s,F}$ to establish the result.

Let
$$F_1=\{1,q\}$$
 and $P_q^*\setminus\{q\}=\{1,q^2,q^3,\ldots\}$

$$\dim_{\mathcal{H}}(J_{P_q^*\setminus\{q\}}) = \sigma^1 < \tau^1 = \dim_{\mathcal{H}}(J_{F_1})$$

step 1 Find a lower bound of $\dim_{\mathcal{H}}(J_{F_1})$

step 2 Show that it works as an upper bound of $\dim_{\mathcal{H}}(J_{P_q^*\setminus\{q\}})$.

Special Perron-Frobenius Operator

Fact: If

$$(L_{s,\{1\}}f)(x) = \left(\frac{1}{1+x}\right)^{2s} f\left(\frac{1}{1+x}\right).$$

and we let $\mu = \frac{1+\sqrt{5}}{2}$ and $v_s(x) = \left(\frac{1}{\mu+x}\right)^{2s}$ then

$$(L_{s,\{1\}}v_s)(x) = \mu^{-2s}v_s(x).$$

Also, using this we get

$$(L_{s,F_1}v_s)(x) = \left(\frac{1}{1+x}\right)^{2s} v_s \left(\frac{1}{1+x}\right) + \left(\frac{1}{q+x}\right)^{2s} v_s \left(\frac{1}{q+x}\right)$$
$$= \mu^{-2s} \left(1 + \left(\frac{\mu+x}{q+x+\mu-1}\right)^{2s}\right) v_s(x).$$

Idea of Proof

So

$$(L_{s,F_1}v_s)(x) \ge \mu^{-2s} \left(1 + \left(\frac{\mu}{q + \mu - 1}\right)^{2s}\right) v_s(x).$$

Now, if s > 0 is such that

$$\mu^{-2s}\left(1+\left(\frac{\mu}{q+\mu-1}\right)^{2s}\right)\geq 1$$

then $(L_{F_1,s}v_s)(x) \ge v_s(x)$.

As $L_{s,F}$ is a positive operator and v_s is strictly positive, hence $r(L_{F_1,s}) \ge 1$ so $\dim_{\mathcal{H}}(J_{F_1}) \ge s$.

Bounds For $\dim_{\mathcal{H}}(J_{F_1})$

Theorem : For $q \ge 4$, we have the following bound

$$\dim_{\mathcal{H}}(J_{F_1}) > \frac{0.52679}{\ln q} = s(q).$$

If we can show that $r(L_{s(q),P_q^*\setminus\{q\}})<1$. This implies that $\dim_{\mathcal{H}}(J_{P_q^*\setminus\{q\}})=\sigma^1< s(q)<\tau^1$ and that completes the proof.

$$r(L_{s(q),P_a^*\setminus\{q\}})<1$$

 $L_{s,\{1,q\}}$ has eigenvector v_s with $r(L_{s,F}) = \lambda_s$ and

$$L_{s,P_q^*\setminus \{q\}}v_s(x) = \left(\frac{1}{1+x}\right)^{2s}v_s\left(\frac{1}{1+x}\right) + \sum_{n\geq 2} \left(\frac{1}{q^n+x}\right)^{2s}v_s\left(\frac{1}{q^n+x}\right)$$

As $v_s \in K_s$ we have that

$$v_s\left(\frac{1}{q^n+x}\right) \le v_s\left(\frac{1}{q+x}\right)e^{2s\left(\frac{1}{q+x}-\frac{1}{q^n+x}\right)} \le v_s\left(\frac{1}{q+x}\right)e^{2s/q}.$$

Also

$$\frac{(q^n + x)^{-2s}}{(q + x)^{-2s}} = \left(\frac{q + x}{q^n + x}\right)^{2s} \le \left(\frac{q + 1}{q^n + 1}\right)^{2s}.$$

$$r(L_{s(q),P_a^*\setminus\{q\}})<1$$

$$L_{s,P_q^*\setminus \{q\}} v_s(x) \le \left(\frac{1}{1+x}\right)^{2s} v_s\left(\frac{1}{1+x}\right) + \frac{e^{4s/q}}{q^{2s}-1} \left(\frac{1}{q+x}\right)^{2s} v_s\left(\frac{1}{q+x}\right)$$

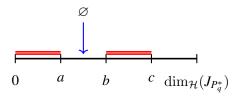
One can show that if s=s(q), then $\frac{e^{4s/q}}{q^{2s}-1}<1$ so there exists a $\mu<1$ such that

$$L_{s,P_q^*\setminus\{q\}}v_s(x) \leq \mu v_s(x)$$

Future work

Given $A \subseteq \mathbb{N}$ infinite and 0 < a < b < c < d.

1. If $[a,b] \subset \mathcal{DS}(A)$ and $[c,d] \subset \mathcal{DS}(A)$ and $\mathcal{DS}(A)$ is nowhere dense in (b,c) then we should have that $\mathcal{DS}(A) \cap (b,c)$ is empty.

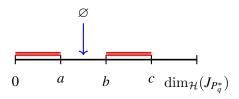


2. if $\mathcal{DS}(A)$ contains a solid interval [a,b] with a>0 then there exists a $\delta>0$ such that $[0,\delta]\subset\mathcal{DS}(A)$.

Future work

Given $A \subseteq \mathbb{N}$ infinite and 0 < a < b < c < d.

1. If $[a,b] \subset \mathcal{DS}(A)$ and $[c,d] \subset \mathcal{DS}(A)$ and $\mathcal{DS}(A)$ is nowhere dense in (b,c) then we should have that $\mathcal{DS}(A) \cap (b,c)$ is empty.



- 2. if $\mathcal{DS}(A)$ contains a solid interval [a,b] with a>0 then there exists a $\delta>0$ such that $[0,\delta]\subset\mathcal{DS}(A)$.
- [1] P. Chitanga, B. Lemmens and R.D Nussbaum, On the structure of the dimension spectrum for continued fraction expansion. *arXiv:2504.20878*, (2025).