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Inverse preserver problem

Let X be a (real) vector space and T : X → X be a linear operator. We say

that T preserves a relation R on X if

(x, y) ∈ R =⇒ (T (x), T (y)) ∈ R.

Q.1 If T is bijective and preserves a relation R, does T−1 preserve the relation?

Q.2 If T preserves a relation R, does some generalized inverse TG preserve the

relation?
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Generalized Inverses:
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Moore-Penrose inverse

If T ∈ B(H1, H2) has closed range, then there exists a unique U ∈ B(H2, H1)

such that

TUT = T, UTU = U, (TU)∗ = TU, (UT )∗ = UT. (†)

This unique operator U is called the Moore-Penrose inverse1 of T . It is denoted

by T †.

1
[Ben-Israel and Greville, 2003] Generalized inverses. Theory and applications.

[Groetsch, 1977] Generalized inverses of linear operators. Representation and approximation.
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Least squares solutions

Consider

T (x) = y

where y ∈ H2 and T ∈ B(H1, H2).

If R(T ) is closed, then ∃! u ∈ R(T ) such that

∥u− y∥ ≤ ∥w − y∥, ∀w ∈ R(T ).

Consider

A := T−1{u}.

A is a closed convex set in a Hilbert space and, hence, contains a unique

element of least norm, say û.

Then, we have

T †y = û.
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Drazin inverse

Let X be a vector space and T : X → X a linear operator. A linear operator

S : X → X is called the Drazin inverse2 of T , denoted by TD, if, for some

k ∈ Z+,

T kST = T k, STS = S, TS = ST.

If k ≤ 1, then S is called the group inverse of T , denoted by T #.

If X is finite dimensional, then TD always exists.

Let TD and T † both exist. Then T † = TD if and only if R(T ) = R(T ∗).

2
[Campbell and Meyer, 2009] Generalized inverses of linear transformations .
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Application of group inverses in finite Markov chains

For an m-state Markov chain whose one-step transition matrix is T , consider

the matrix A = I − T . As Carl D. Meyer said3:

“For an ergodic chain, virtually everything that one would want to know about

the chain can be determined by computing A
#

.”

3
[Meyer, 1975] The role of the group generalized inverse in the theory of finite Markov chains.
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Partially ordered vector spaces:
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Questions

Special partially ordered vector spaces:

Riesz spaces (vector lattices).

Pre-Riesz spaces.

Structure preserving linear maps:

Riesz homomorphism.

Riesz* homomorphism.

Disjointness preserving maps

(d.p.).

Q.1 Let X be a partially ordered vector space and T : X → X be a structure

preserving linear map. If T is bijective, is then T−1 of the same type?

Q.2 If T is not bijective but TD or T † exist, is then TD or T † of the same

type?
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Historical overview

Let X be a partially ordered vector space and T : X → X a bijective linear

map.

If X is Riesz space and T a Riesz homomorphism, then T−1 is a Riesz

homomorphism.

[2018, van Imhoff]

X is pre-Riesz space and T a Riesz* hom. ≠⇒ T−1 is Riesz* hom.

[1993, Huijsmans and Pagter]

X Banach lattice and T : X → X d.p. =⇒ T−1 d.p.

[2000, Abramovich and Kitover]

X vector lattice and T : X → X d.p. ≠⇒ T−1 d.p.

[2019, Kalauch, Lemmens and Gaans]

X Archimedean finite dimensional pre-Riesz space and T : X → X d.p.

=⇒ T−1 d.p.
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Riesz homomorphism

Let X,Y be Riesz spaces and T : X → Y a linear operator. Then T is called a

Riesz homomorphism if, for every x, y ∈ X, one has

T (x ∨ y) = T (x) ∨ T (y).

Proposition (Kalauch, R., Sivakumar, 2025)

Let X be a Riesz space and T : X → X a Riesz homomorphism. If TD exists,

then TD is a Riesz homomorphism.
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Pre-Riesz spaces and Riesz* homomorphisms:
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Pre-Riesz space

Definition (pre-Riesz space):

A partially ordered vector space X is called a pre-Riesz space4 if

Y (Riesz space),X
Φ

bipositive
Φ[X] Y.

order dense

⊆

Such a Riesz space Y is called a vector lattice cover for X.

Definition (Riesz completion):

If, for every y ∈ Y ,

y =

n∨
i=1

Φ(ai)−
m∨

j=1

Φ(bj),

then (Y,Φ) is called the Riesz completion of X, denoted by Xρ.

4
[Van Haandel, 1993] Completions in Riesz space theory. PhD thesis, University of Nijmegen .
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4-ray cone

u

v

y

x
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Riesz* homomorphism

Let X,Y be pre-Riesz spaces. A linear operator T : X → Y is called a Riesz∗

homomorphism if there exists a Riesz homomorhism S : Xρ → Y ρ between

their Riesz completions that extends T.

X Y

Xρ Y ρ

T

ΦX

∃!S

ΦY
S ◦ ΦX = ΦY ◦ T.

The extension S is uniquely determined by T , and is called the van Haandel

extension of T .
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Bijective Riesz* homomorphism

Q. Let X be a pre-Riesz space and T : X → X a Riesz* homomorphism. If T

is bijective, is then T−1 a Riesz* homomorphism?

Answer: No!

Example ([van Imhoff, 2018])

Let X be the space of all polynomials on [0, 1] with the point-wise order. Let

T : X → X be the linear map defined as

Tp(x) = p( 1
2
x) ∀x ∈ [0, 1], p ∈ X.

It is shown that T is a bijective Riesz* homomorphism and T−1 is not a Riesz*

homomorphism.

The Riesz completion Xρ is the space of all continuous piecewise polynomial

functions on [0, 1]. The van Haandel extension S : Xρ → Xρ is given as

Sf(x) = f( 1
2
x) ∀x ∈ [0, 1], f ∈ Xρ.

Observe that

kerS = {f ∈ Xρ : ∀x ∈ [0, 1
2
]; f(x) = 0}.

Hence S is not bijective.
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A characterization

X X

Xρ Xρ

T

Φ

S

Φ

Theorem (Kalauch, R., Sivakumar, 2025)

Let X be a pre-Riesz space and Xρ the Riesz completion of X. Let T : X → X

be a Riesz* homomorphism and S : Xρ → Xρ the van Haandel extension of T .

Let TD exist. Then TD is a Riesz* homomorphism if and only if SD exists.

Corollary (Kalauch, R., Sivakumar, 2025)

If T is bijective, then T−1 : X → X is a Riesz* homomorphism if and only if S

is bijective.

17 / 26



A characterization

X X

Xρ Xρ

T

Φ

S

Φ

Theorem (Kalauch, R., Sivakumar, 2025)

Let X be a pre-Riesz space and Xρ the Riesz completion of X. Let T : X → X

be a Riesz* homomorphism and S : Xρ → Xρ the van Haandel extension of T .

Let TD exist. Then TD is a Riesz* homomorphism if and only if SD exists.

Corollary (Kalauch, R., Sivakumar, 2025)

If T is bijective, then T−1 : X → X is a Riesz* homomorphism if and only if S

is bijective.

17 / 26



Polyhedral cones in Rn

Let K ⊆ Rn be a generating polyhedral cone in Rn.

Then (Rn,K) is a pre-Riesz space, and Rk with the point-wise order is the

Riesz completion5 of (Rn,K) for a suitable k.

Theorem (Kalauch, R., Sivakumar, 2024)

If T : (Rn,K) → (Rn,K) is a Riesz* homomorphism, then so is TD.

5
Kalauch, Lemmens, van Gaans: Riesz completions, functional representations, and anti lattices.
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Disjointness:
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Disjointness

For a vector lattice X and x, y ∈ X, we say that x and y are disjoint,

denoted by x ⊥ y, if

|x| ∧ |y| = 0.

Example:

Let Ω be a compact Hausdorff space and C(Ω) the space of all real valued

continuous functions on Ω with the point-wise order. For any f, g ∈ C(Ω) and

x ∈ Ω,

f ⊥ g ⇐⇒ ∀x ∈ Ω: f(x)g(x) = 0.

Let X be a pre-Riesz space and Y a Riesz cover of X. For x, y ∈ X, we

say that x and y are disjoint, denoted by x ⊥ y, if

Φ(x) ⊥ Φ(y).

20 / 26



Disjointness

For a vector lattice X and x, y ∈ X, we say that x and y are disjoint,

denoted by x ⊥ y, if

|x| ∧ |y| = 0.

Example:

Let Ω be a compact Hausdorff space and C(Ω) the space of all real valued

continuous functions on Ω with the point-wise order. For any f, g ∈ C(Ω) and

x ∈ Ω,

f ⊥ g ⇐⇒ ∀x ∈ Ω: f(x)g(x) = 0.

Let X be a pre-Riesz space and Y a Riesz cover of X. For x, y ∈ X, we

say that x and y are disjoint, denoted by x ⊥ y, if

Φ(x) ⊥ Φ(y).

20 / 26



Disjoint elements in the 4-ray cone

Define

K := pos



1

0

1

 ,


−1

0

1

 ,


0

1

1

 ,


0

−1

1


 ⊆ R3.

(R3,K) is a pre-Riesz space, referred to as the 4-ray cone, with the Riesz

completion (R4,Φ), where

Φ: R3 → R4, x =


x1

x2

x3

 7−→


1 1 1

1 −1 1

−1 1 1

−1 −1 1



x1

x2

x3

 =


f1(x)

f2(x)

f3(x)

f4(x)

 .

Thus, for x, y ∈ R3, we have

x ⊥ y ⇐⇒ ∀i : fi(x)fi(y) = 0

⇐⇒ x ∈ U and y ∈ V,

span{(1, 0, 1)} ⊥ span{(1, 0,−1)}

span{(0, 1, 1)} ⊥ span{(0, 1,−1)}

span{(1, 1, 0)} ⊥ span{(1,−1, 0)}
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Disjointness preserving operators

Let X be a pre-Riesz space. A linear map T : X → X is called disjointness

preserving if

x ⊥ y =⇒ T (x) ⊥ T (y).

Theorem (Kalauch, Lemmens, van Gaans, 2014)

If X is a finite dimensional Archimedean pre-Riesz space and T is a bijective

disjointness preserving operator, then so is T−1.

Theorem (Kalauch, R., Sivakumar, 2025)

Let X be a finite dimensional Archimedean pre-Riesz space. If T : X → X is

disjointness preserving operator, then so is TD.
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Summary

Is TD : X → X of the same type?

Space (X) Operator (T ) Answer

Riesz space Riesz homomorphism ✓

pre-Riesz spaces Riesz* ✓⇔ SD exists

Archimedean finite dimen-

sional pre-Riesz spaces

d.p. ✓

Banach lattice d.p. Open

Remark

One cannot expect the analogous results for the Moore-Penrose inverse.
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