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Theorem (Brown and Pearcy, 1964)
Let H be a separable infinite-dimensional Hilbert space. A
bounded operator C on H is a commutator if and only if it is
not of the form λ I +K for some nonzero scalar λ and some
compact operator K on H .

Let C ≥ I be any bounded operator on the Hilbert lattice ℓ2

which is not of the form λ I +K for some scalar λ and some
compact operator K . Then by the above theorem there exist
bounded operators A and B on ℓ2 such that
[A,B] := AB−BA = C ≥ I. One may ask whether A and B can
be also positive operators on the Hilbert lattice ℓ2. The answer
to this question is negative, as we have the following theorem
that is inspired by Wielandt’s proof of the Wintner-Wielandt
result.
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Theorem (Drnovšek, Kandić, 2025)
Let A and B be bounded operators on a Banach lattice. If
[A,B]≥ I, then neither A nor B is positive.

Proof.
Suppose first that A is positive. By induction, for each n ∈ N we
have [An,B]≥ nAn−1. We conclude that n∥An−1∥ ≤ ∥[An,B]∥,
and the submultiplicativity of the norm gives us

n∥An−1∥ ≤ ∥AnB−BAn∥ ≤ 2∥A∥∥B∥∥An−1∥.

Now, if Ak = 0 for some k ∈ N, then the inequality
0 = [Ak ,B]≥ kAk−1 ≥ 0 yields Ak−1 = 0. It follows that An ̸= 0
for any n ∈ N. We obtain that, for each n ∈ N, n ≤ 2∥A∥∥B∥.
This contradiction shows that A is not positive.
If B is positive, we rewrite [A,B] = [B,−A] and apply the first
part of the proof.
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Let A and B be bounded operators on a Banach lattice. If
[A,B]≥ I, then neither A nor B is positive.

Proof.
Suppose first that A is positive. By induction, for each n ∈ N we
have [An,B]≥ nAn−1. We conclude that n∥An−1∥ ≤ ∥[An,B]∥,
and the submultiplicativity of the norm gives us

n∥An−1∥ ≤ ∥AnB−BAn∥ ≤ 2∥A∥∥B∥∥An−1∥.

Now, if Ak = 0 for some k ∈ N, then the inequality
0 = [Ak ,B]≥ kAk−1 ≥ 0 yields Ak−1 = 0. It follows that An ̸= 0
for any n ∈ N. We obtain that, for each n ∈ N, n ≤ 2∥A∥∥B∥.
This contradiction shows that A is not positive.
If B is positive, we rewrite [A,B] = [B,−A] and apply the first
part of the proof.

3 / 12



Theorem (Drnovšek, Kandić, 2025)
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We have also the next quantitative version of the last theorem.

Theorem (Drnovšek, Kandić, 2025)
Let A and B be bounded operators on a Banach lattice.
Suppose that at least one of them is positive, and that for some
ε > 0 there exists an operator E with ∥E∥ ≤ ε such that

[A,B]≥ I +E .

Then
∥A∥ · ∥B∥ ≥ 1

2 ln
1
ε
.
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In view of the above results one can ask a question whether
there exist positive operators A and B on the Hilbert lattice ℓ2

such that their commutator [A,B] is greater than a small
perturbation of the identity operator.
We now give an example of such operators.
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Let (en)n∈N be the standard basis of the Hilbert lattice ℓ2. The
operator U : ℓ2 → ℓ2 which is defined on the standard basis
vectors as Uen = e2n (n ∈ N) is a positive isometry. Similarly,
the operator V : ℓ2 → ℓ2 which is defined on the standard basis
vectors as Ven = e2n−1 (n ∈ N) is also a positive isometry.
Hence, U and V can be realized as infinite matrices

U =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
...

...
...

...
...

...
. . .


V =



1 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


with respect to the standard basis (en)n∈N. Then we have
UU∗+VV ∗ = I, U∗U = V ∗V = I and U∗V = V ∗U = 0.
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Using U and V we can prove the following theorem.

Theorem (Drnovšek, Kandić, 2025)

There exist positive operators A,B : ℓ2 → ℓ2 such that
[A,B] = I +N, where N is a nilpotent operator of nil-index 3.
Furthermore, if ε ∈ (0,1), then A and B can be chosen in such
a way that ∥A∥= O(ε−3), ∥B∥= O(ε−3) and ∥N∥= O(ε).

Of course, it is not possible that the nilpotent operator N in the
theorem is positive. Let us sketch the proof of the theorem.
Let W := UV ∗+VU∗. Then W satisfies We2n = e2n−1 and
We2n−1 = e2n for each n ∈ N. Therefore,

W =


0 1 0 0 . . .
1 0 0 0 . . .
0 0 0 1 . . .
0 0 1 0 . . .
...

...
...

...
. . .

 .
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Now we define 4×4 block-operator matrices

A=


0 εV ∗ 0 3ε3I
0 U∗ εI 0

1
ε2 V ∗ 0 U∗ 2εW
1
ε3 U∗ 0 1

ε
V ∗ 0

 B =


0 0 2ε2V 2ε3U
0 0 0 0
0 1

ε
I 2U 2εV

1
ε3 I 0 0 0


that define positive operators on ℓ2 ∼= ℓ2 ⊕ ℓ2 ⊕ ℓ2 ⊕ ℓ2 satisfying
∥A∥= O(ε−3) and ∥B∥= O(ε−3).
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A direct calculation now yields

[A,B] =


I 0 −2ε2W −4ε3VW
0 I 2εU 2ε2V
0 0 I −4εUW
0 0 0 I

 ,

that can be written as I +N, where

N =


0 0 −2ε2W −4ε3VW
0 0 2εU 2ε2V
0 0 0 −4εUW
0 0 0 0


and ∥N∥= O(ε).
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In the finite-dimensional setting, the situation is quite different,
as the notion of the trace restricts drastically which operators
are commutators. An n×n matrix over an arbitrary field is a
commutator if and only if its trace is zero.
The order analog of this classical result is the following.

Theorem (Drnovšek, Kandić, 2019)
A non-negative matrix C can be written as a commutator of
non-negative matrices A and B if and only if C is nilpotent.
Moreover, we can choose A to be diagonal and B to be
permutation similar to a strictly upper-triangular matrix.
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Proposition
Let A and B be real n×n matrices. Assume that there exists a
real n×n matrix X such that

[A,B]≥ I −X .

Then tr(X )≥ n and r(X )≥ 1, and so ∥X∥ ≥ 1.
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For more related results one can consult the paper:

R. Drnovšek, M. Kandić: Commutators greater than a
perturbation of the identity, J. Math. Anal. Appl. 541 (2025)
128713.
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