Commutators greater than a perturbation of

the identity

Roman Drnovsek

Ljubljana, Slovenia

Positivity 12, June 2025

1/12



Theorem (Brown and Pearcy, 1964)

Let 77 be a separable infinite-dimensional Hilbert space. A
bounded operator C on ¢ is a commutator if and only if it is
not of the form A1+ K for some nonzero scalar A and some
compact operator K on ¢ .
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Theorem (Brown and Pearcy, 1964)

Let 77 be a separable infinite-dimensional Hilbert space. A
bounded operator C on s is a commutator if and only if it is
not of the form A1+ K for some nonzero scalar A and some
compact operator K on ¢ .

Let C > I be any bounded operator on the Hilbert lattice ¢
which is not of the form A/+ K for some scalar A and some
compact operator K. Then by the above theorem there exist
bounded operators A and B on ¢? such that

[A,B] :=AB—-BA=C>1.
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Theorem (Brown and Pearcy, 1964)

Let 77 be a separable infinite-dimensional Hilbert space. A
bounded operator C on s is a commutator if and only if it is
not of the form A1+ K for some nonzero scalar A and some
compact operator K on ¢ .

Let C > I be any bounded operator on the Hilbert lattice ¢
which is not of the form A/+ K for some scalar A and some
compact operator K. Then by the above theorem there exist
bounded operators A and B on ¢? such that

[A,B] := AB—BA= C > 1. One may ask whether A and B can
be also positive operators on the Hilbert lattice ¢2. The answer
to this question is negative, as we have the following theorem
that is inspired by Wielandt’s proof of the Wintner-Wielandt
result.
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Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.
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Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.

V

Suppose first that A is positive. By induction, for each n € N we
have [A",B] > nA"1.
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Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.

Suppose first that A is positive. By induction, for each n € N we
have [A",B] > nA"~'. We conclude that n||A"~"|| < ||[A", B]],
and the submultiplicativity of the norm gives us

nl| A" | < ||A"B— BAT|| < 2||A]l | B | A" .
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Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.

Suppose first that A is positive. By induction, for each n € N we
have [A",B] > nA"~'. We conclude that n||A"~"|| < ||[A", B]],
and the submultiplicativity of the norm gives us

nl| A" | < ||A"B— BAT|| < 2||A]l | B | A" .

Now, if AK = 0 for some k e N, then the inequality
0 = [AX, B] > kA*~1 > 0 yields AK~1 = 0. It follows that A" # 0
forany ne N.

/12



Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.

Suppose first that A is positive. By induction, for each n € N we
have [A",B] > nA"~'. We conclude that n||A"~"|| < ||[A", B]],
and the submultiplicativity of the norm gives us

nl| A" | < ||A"B— BAT|| < 2||A]l | B | A" .

Now, if AK = 0 for some k e N, then the inequality

0 = [AX, B] > kA*~1 > 0 yields AK~1 = 0. It follows that A" # 0
for any n € N. We obtain that, for each ne N, n < 2||A|| || B|l.
This contradiction shows that A is not positive.
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Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice. If
[A,B] > I, then neither A nor B is positive.

Suppose first that A is positive. By induction, for each n € N we

have [A",B] > nA"~'. We conclude that n||A"~"|| < ||[A", B]],
and the submultiplicativity of the norm gives us

nl| A" | < ||A"B— BAT|| < 2||A]l | B | A" .

Now, if AK = 0 for some k e N, then the inequality

0 = [AX, B] > kA*~1 > 0 yields AK~1 = 0. It follows that A" # 0
for any n € N. We obtain that, for each ne N, n < 2||A|| || B|l.
This contradiction shows that A is not positive.

If B is positive, we rewrite [A, B] = [B, —A] and apply the first
part of the proof.

Ol
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We have also the next quantitative version of the last theorem.

Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice.
Suppose that at least one of them is positive, and that for some
€ > 0 there exists an operator E with || E|| < € such that

[A.B] > I+E.
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We have also the next quantitative version of the last theorem.

Theorem (Drnovsek, Kandi¢, 2025)

Let A and B be bounded operators on a Banach lattice.
Suppose that at least one of them is positive, and that for some
€ > 0 there exists an operator E with || E|| < € such that

[A,B] > I+ E.
Then

Al 1|B]| > %1n

1
5

4/ 12



In view of the above results one can ask a question whether
there exist positive operators A and B on the Hilbert lattice /2
such that their commutator [A, B] is greater than a small
perturbation of the identity operator.
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In view of the above results one can ask a question whether
there exist positive operators A and B on the Hilbert lattice /2
such that their commutator [A, B] is greater than a small
perturbation of the identity operator.

We now give an example of such operators.
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Let (en)nen be the standard basis of the Hilbert lattice /2. The
operator U: (%> — ¢ which is defined on the standard basis
vectors as Ue, = ex, (N € N) is a positive isometry.
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Let (en)nen be the standard basis of the Hilbert lattice /2. The
operator U: (%> — ¢ which is defined on the standard basis
vectors as Ue, = e, (N € N) is a positive isometry. Similarly,
the operator V: ¢2 — ¢? which is defined on the standard basis
vectors as Ve, = es,_1 (n € N) is also a positive isometry.
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Let (en)nen be the standard basis of the Hilbert lattice /2. The
operator U: (%> — ¢ which is defined on the standard basis
vectors as Ue, = e, (N € N) is a positive isometry. Similarly,
the operator V: ¢2 — ¢? which is defined on the standard basis
vectors as Ve, = es,_1 (n € N) is also a positive isometry.
Hence, U and V can be realized as infinite matrices

00000O00O 100000
100000 000000
00000O00O 010000
u—|l o1 0000 vl ooo0oo0o0o0
00000O00O 001000
001000 000000

with respect to the standard basis (en)nen.
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Let (en)nen be the standard basis of the Hilbert lattice /2. The
operator U: (%> — ¢ which is defined on the standard basis
vectors as Ue, = e, (N € N) is a positive isometry. Similarly,
the operator V: ¢2 — ¢? which is defined on the standard basis
vectors as Ve, = es,_1 (n € N) is also a positive isometry.
Hence, U and V can be realized as infinite matrices

0 00O0O0O 10 0 00O
100 00O 0 00 O0OO
000O0O0ODO 01 0O0O0O
=101 0000 v=| 0 0 0 0 0 O
000O0O0ODO 0010O00O0
0 0100O00O0 0 00O0O0OO

with respect to the standard basis (en)nen. Then we have
vuur+vv =, UU=Vv*V=Iland UV =V*U=0.
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Using U and V we can prove the following theorem.

Theorem (Drnovsek, Kandi¢, 2025)

There exist positive operators A, B: (7> — (? such that

[A,B] =1+ N, where N is a nilpotent operator of nil-index 3.
Furthermore, if € € (0,1), then A and B can be chosen in such
a way that |A|| = O(¢73), || B|| = O(e~2) and ||N|| = O(¢).

Of course, it is not possible that the nilpotent operator N in the
theorem is positive.
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Using U and V we can prove the following theorem.

Theorem (Drnovsek, Kandi¢, 2025)

There exist positive operators A, B: (7> — (? such that

[A,B] =1+ N, where N is a nilpotent operator of nil-index 3.
Furthermore, if € € (0,1), then A and B can be chosen in such
a way that |A|| = O(¢73), || B|| = O(e~2) and ||N|| = O(¢).

Of course, it is not possible that the nilpotent operator N in the
theorem is positive. Let us sketch the proof of the theorem.
Let W .= UV* 4+ VU*. Then W satisfies We,, = e>,_1 and

Wes,,_1 = e-p, for each n € N. Therefore,
0100
1000
w=| 0 0 0 1
0010
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Now we define 4 x 4 block-operator matrices

0 eVr 0 3% 0 0 22V 2e%U
0 U e 0 B 0 0 0 0
A= LV 0 U 2eW | o 11 2u 2ev
LU 0 lv- 0 50 0 0

that define positive operators on (2 = (2 ¢ (? & (? & (2 satisfying
|All = O(e~®) and ||B|| = O(e ).
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A direct calculation now yields

| 0 —2e2W —4e3VW

0 I 2eU 2e2V
[A.B] = 00 / —4eUW ’

00 0 /

that can be written as /+ N, where
0 0 —2e2W —4e3VW
N_| 00 2eU 262V
100 0 —4gUW
00

0 0
and |N|| = O(¢).
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In the finite-dimensional setting, the situation is quite different,
as the notion of the trace restricts drastically which operators
are commutators. An n x n matrix over an arbitrary field is a
commutator if and only if its trace is zero.
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In the finite-dimensional setting, the situation is quite different,
as the notion of the trace restricts drastically which operators
are commutators. An n x n matrix over an arbitrary field is a
commutator if and only if its trace is zero.

The order analog of this classical result is the following.

Theorem (Drnovsek, Kandi¢, 2019)

A non-negative matrix C can be written as a commutator of
non-negative matrices A and B if and only if C is nilpotent.
Moreover, we can choose A to be diagonal and B to be
permutation similar to a strictly upper-triangular matrix.
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Proposition
Let A and B be real n x n matrices. Assume that there exists a
real n x n matrix X such that

[A,B] > X.

Thentr(X) > nandr(X)>1, and so || X| > 1.
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For more related results one can consult the paper:
R. Drnovsek, M. Kandi¢: Commutators greater than a

perturbation of the identity, J. Math. Anal. Appl. 541 (2025)
128713.
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