Commutators greater than a perturbation of the identity

Roman Drnovšek

Ljubljana, Slovenia

Positivity 12, June 2025

Theorem (Brown and Pearcy, 1964)

Let \mathscr{H} be a separable infinite-dimensional Hilbert space. A bounded operator C on \mathscr{H} is a commutator if and only if it is not of the form $\lambda I + K$ for some nonzero scalar λ and some compact operator K on \mathscr{H} .

Let $C \ge I$ be any bounded operator on the Hilbert lattice ℓ^2 which is not of the form $\lambda I + K$ for some scalar λ and some compact operator K. Then by the above theorem there exist bounded operators A and B on ℓ^2 such that $[A,B] := AB - BA = C \ge I$. One may ask whether A and B can be also positive operators on the Hilbert lattice ℓ^2 . The answer to this question is negative, as we have the following theorem that is inspired by Wielandt's proof of the Wintner-Wielandt result.

Theorem (Brown and Pearcy, 1964)

Let \mathscr{H} be a separable infinite-dimensional Hilbert space. A bounded operator C on \mathscr{H} is a commutator if and only if it is not of the form $\lambda I + K$ for some nonzero scalar λ and some compact operator K on \mathscr{H} .

Let $C \ge I$ be any bounded operator on the Hilbert lattice ℓ^2 which is not of the form $\lambda I + K$ for some scalar λ and some compact operator K. Then by the above theorem there exist bounded operators A and B on ℓ^2 such that

 $[A,B] := AB - BA = C \ge I$. One may ask whether A and B can be also positive operators on the Hilbert lattice ℓ^2 . The answer to this question is negative, as we have the following theorem that is inspired by Wielandt's proof of the Wintner-Wielandt result

Theorem (Brown and Pearcy, 1964)

Let \mathscr{H} be a separable infinite-dimensional Hilbert space. A bounded operator C on \mathscr{H} is a commutator if and only if it is not of the form $\lambda I + K$ for some nonzero scalar λ and some compact operator K on \mathscr{H} .

Let $C \ge I$ be any bounded operator on the Hilbert lattice ℓ^2 which is not of the form $\lambda I + K$ for some scalar λ and some compact operator K. Then by the above theorem there exist bounded operators A and B on ℓ^2 such that $[A,B]:=AB-BA=C \ge I$. One may ask whether A and B can be also positive operators on the Hilbert lattice ℓ^2 . The answer to this question is negative, as we have the following theorem that is inspired by Wielandt's proof of the Wintner-Wielandt result.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n,B] \geq nA^{n-1}$. We conclude that $n\|A^{n-1}\| \leq \|[A^n,B]\|$, and the submultiplicativity of the norm gives us

$$n||A^{n-1}|| \le ||A^nB - BA^n|| \le 2||A|| \, ||B|| \, ||A^{n-1}||.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive. If B is positive, we rewrite [A,B]=[B,-A] and apply the first part of the proof.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n, B] \ge nA^{n-1}$. We conclude that $n\|A^{n-1}\| \le \|[A^n, B]\|$, and the submultiplicativity of the norm gives us

$$|A^{n-1}| \le |A^n B - BA^n| \le 2|A| |B| |A^{n-1}|.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive. If B is positive, we rewrite [A,B]=[B,-A] and apply the first part of the proof.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n,B] \geq nA^{n-1}$. We conclude that $n\|A^{n-1}\| \leq \|[A^n,B]\|$, and the submultiplicativity of the norm gives us

$$|n||A^{n-1}|| \le ||A^nB - BA^n|| \le 2||A|| \, ||B|| \, ||A^{n-1}||.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive. If B is positive, we rewrite [A,B]=[B,-A] and apply the first part of the proof.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n, B] \ge nA^{n-1}$. We conclude that $n\|A^{n-1}\| \le \|[A^n, B]\|$, and the submultiplicativity of the norm gives us

$$|n||A^{n-1}|| \le ||A^nB - BA^n|| \le 2||A|| ||B|| ||A^{n-1}||.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive. If B is positive, we rewrite [A,B]=[B,-A] and apply the first part of the proof.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n,B] \geq nA^{n-1}$. We conclude that $n\|A^{n-1}\| \leq \|[A^n,B]\|$, and the submultiplicativity of the norm gives us

$$|n||A^{n-1}|| \le ||A^nB - BA^n|| \le 2||A|| ||B|| ||A^{n-1}||.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive.

If *B* is positive, we rewrite [A, B] = [B, -A] and apply the first part of the proof.

Let A and B be bounded operators on a Banach lattice. If $[A, B] \ge I$, then neither A nor B is positive.

Proof.

Suppose first that A is positive. By induction, for each $n \in \mathbb{N}$ we have $[A^n,B] \geq nA^{n-1}$. We conclude that $n\|A^{n-1}\| \leq \|[A^n,B]\|$, and the submultiplicativity of the norm gives us

$$|n||A^{n-1}|| \le ||A^nB - BA^n|| \le 2||A|| ||B|| ||A^{n-1}||.$$

Now, if $A^k=0$ for some $k\in\mathbb{N}$, then the inequality $0=[A^k,B]\geq kA^{k-1}\geq 0$ yields $A^{k-1}=0$. It follows that $A^n\neq 0$ for any $n\in\mathbb{N}$. We obtain that, for each $n\in\mathbb{N}$, $n\leq 2\|A\|\|B\|$. This contradiction shows that A is not positive. If B is positive, we rewrite [A,B]=[B,-A] and apply the first part of the proof.

We have also the next quantitative version of the last theorem.

Theorem (Drnovšek, Kandić, 2025)

Let A and B be bounded operators on a Banach lattice. Suppose that at least one of them is positive, and that for some $\varepsilon>0$ there exists an operator E with $\|E\|\leq \varepsilon$ such that

$$[A,B] \geq I + E$$
.

Then

$$|A| \cdot ||B|| \ge \frac{1}{2} \ln \frac{1}{\varepsilon}.$$

We have also the next quantitative version of the last theorem.

Theorem (Drnovšek, Kandić, 2025)

Let A and B be bounded operators on a Banach lattice. Suppose that at least one of them is positive, and that for some $\varepsilon>0$ there exists an operator E with $\|E\|\leq\varepsilon$ such that

$$[A,B] \ge I + E$$
.

Then

$$||A|| \cdot ||B|| \geq \frac{1}{2} \ln \frac{1}{\varepsilon}.$$

In view of the above results one can ask a question whether there exist **positive** operators A and B on the Hilbert lattice ℓ^2 such that their commutator [A,B] is greater than a small perturbation of the identity operator.

We now give an example of such operators.

In view of the above results one can ask a question whether there exist **positive** operators A and B on the Hilbert lattice ℓ^2 such that their commutator [A,B] is greater than a small perturbation of the identity operator.

We now give an example of such operators.

Let $(e_n)_{n\in\mathbb{N}}$ be the standard basis of the Hilbert lattice ℓ^2 . The operator $U\colon \ell^2 \to \ell^2$ which is defined on the standard basis vectors as $Ue_n = e_{2n}$ $(n\in\mathbb{N})$ is a positive isometry. Similarly, the operator $V\colon \ell^2 \to \ell^2$ which is defined on the standard basis vectors as $Ve_n = e_{2n-1}$ $(n\in\mathbb{N})$ is also a positive isometry. Hence, U and V can be realized as infinite matrices

with respect to the standard basis $(e_n)_{n\in\mathbb{N}}.$ Then we have $UU^*+VV^*=I,\ U^*U=V^*V=I$ and $U^*V=V^*U=0.$

Let $(e_n)_{n\in\mathbb{N}}$ be the standard basis of the Hilbert lattice ℓ^2 . The operator $U\colon \ell^2\to\ell^2$ which is defined on the standard basis vectors as $Ue_n=e_{2n}$ $(n\in\mathbb{N})$ is a positive isometry. Similarly, the operator $V\colon \ell^2\to\ell^2$ which is defined on the standard basis vectors as $Ve_n=e_{2n-1}$ $(n\in\mathbb{N})$ is also a positive isometry. Hence, U and V can be realized as infinite matrices

$$U = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad V = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \ddots \end{pmatrix}$$

with respect to the standard basis $(e_n)_{n\in\mathbb{N}}$. Then we have $UU^*+VV^*=I,\ U^*U=V^*V=I$ and $U^*V=V^*U=0.$

Let $(e_n)_{n\in\mathbb{N}}$ be the standard basis of the Hilbert lattice ℓ^2 . The operator $U\colon \ell^2 \to \ell^2$ which is defined on the standard basis vectors as $Ue_n = e_{2n} \ (n\in\mathbb{N})$ is a positive isometry. Similarly, the operator $V\colon \ell^2 \to \ell^2$ which is defined on the standard basis vectors as $Ve_n = e_{2n-1} \ (n\in\mathbb{N})$ is also a positive isometry. Hence, U and V can be realized as infinite matrices

with respect to the standard basis $(e_n)_{n \in \mathbb{N}}$. Then we have $UU^* + VV^* = I$, $U^*U = V^*V = I$ and $U^*V = V^*U = 0$.

Let $(e_n)_{n\in\mathbb{N}}$ be the standard basis of the Hilbert lattice ℓ^2 . The operator $U\colon \ell^2\to\ell^2$ which is defined on the standard basis vectors as $Ue_n=e_{2n}\ (n\in\mathbb{N})$ is a positive isometry. Similarly, the operator $V\colon \ell^2\to\ell^2$ which is defined on the standard basis vectors as $Ve_n=e_{2n-1}\ (n\in\mathbb{N})$ is also a positive isometry. Hence, U and V can be realized as infinite matrices

with respect to the standard basis $(e_n)_{n\in\mathbb{N}}$. Then we have $UU^* + VV^* = I$, $U^*U = V^*V = I$ and $U^*V = V^*U = 0$.

Using U and V we can prove the following theorem.

Theorem (Drnovšek, Kandić, 2025)

There exist positive operators $A, B: \ell^2 \to \ell^2$ such that [A,B] = I + N, where N is a nilpotent operator of nil-index 3. Furthermore, if $\varepsilon \in (0,1)$, then A and B can be chosen in such a way that $\|A\| = O(\varepsilon^{-3})$, $\|B\| = O(\varepsilon^{-3})$ and $\|N\| = O(\varepsilon)$.

Of course, it is not possible that the nilpotent operator N in the theorem is positive. Let us sketch the proof of the theorem. Let $W := UV^* + VU^*$. Then W satisfies $We_{2n} = e_{2n-1}$ and $We_{2n-1} = e_{2n}$ for each $n \in \mathbb{N}$. Therefore,

$$W = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right).$$

Using U and V we can prove the following theorem.

Theorem (Drnovšek, Kandić, 2025)

There exist positive operators $A, B: \ell^2 \to \ell^2$ such that [A,B] = I + N, where N is a nilpotent operator of nil-index 3. Furthermore, if $\varepsilon \in (0,1)$, then A and B can be chosen in such a way that $\|A\| = O(\varepsilon^{-3})$, $\|B\| = O(\varepsilon^{-3})$ and $\|N\| = O(\varepsilon)$.

Of course, it is not possible that the nilpotent operator N in the theorem is positive. Let us sketch the proof of the theorem. Let $W := UV^* + VU^*$. Then W satisfies $We_{2n} = e_{2n-1}$ and $We_{2n-1} = e_{2n}$ for each $n \in \mathbb{N}$. Therefore,

$$W = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right).$$

Now we define 4 × 4 block-operator matrices

$$A = \begin{pmatrix} 0 & \varepsilon V^* & 0 & 3\varepsilon^3 I \\ 0 & U^* & \varepsilon I & 0 \\ \frac{1}{\varepsilon^2} V^* & 0 & U^* & 2\varepsilon W \\ \frac{1}{\varepsilon^3} U^* & 0 & \frac{1}{\varepsilon} V^* & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 2\varepsilon^2 V & 2\varepsilon^3 U \\ 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\varepsilon} I & 2U & 2\varepsilon V \\ \frac{1}{\varepsilon^3} I & 0 & 0 & 0 \end{pmatrix}$$

that define positive operators on $\ell^2 \cong \ell^2 \oplus \ell^2 \oplus \ell^2 \oplus \ell^2$ satisfying $\|A\| = O(\varepsilon^{-3})$ and $\|B\| = O(\varepsilon^{-3})$.

A direct calculation now yields

$$[A,B] = \begin{pmatrix} I & 0 & -2\varepsilon^2 W & -4\varepsilon^3 VW \\ 0 & I & 2\varepsilon U & 2\varepsilon^2 V \\ 0 & 0 & I & -4\varepsilon UW \\ 0 & 0 & 0 & I \end{pmatrix},$$

that can be written as I + N, where

$$N = \begin{pmatrix} 0 & 0 & -2\varepsilon^2 W & -4\varepsilon^3 VW \\ 0 & 0 & 2\varepsilon U & 2\varepsilon^2 V \\ 0 & 0 & 0 & -4\varepsilon UW \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and $||N|| = O(\varepsilon)$.

In the finite-dimensional setting, the situation is quite different, as the notion of the trace restricts drastically which operators are commutators. An $n \times n$ matrix over an arbitrary field is a commutator if and only if its trace is zero.

The order analog of this classical result is the following.

Theorem (Drnovšek, Kandić, 2019)

A non-negative matrix C can be written as a commutator of non-negative matrices A and B if and only if C is nilpotent. Moreover, we can choose A to be diagonal and B to be permutation similar to a strictly upper-triangular matrix. In the finite-dimensional setting, the situation is quite different, as the notion of the trace restricts drastically which operators are commutators. An $n \times n$ matrix over an arbitrary field is a commutator if and only if its trace is zero. The order analog of this classical result is the following.

Theorem (Drnovšek, Kandić, 2019)

A non-negative matrix C can be written as a commutator of non-negative matrices A and B if and only if C is nilpotent. Moreover, we can choose A to be diagonal and B to be permutation similar to a strictly upper-triangular matrix.

Proposition

Let A and B be real $n \times n$ matrices. Assume that there exists a real $n \times n$ matrix X such that

$$[A,B] \geq I - X$$
.

Then $tr(X) \ge n$ and $r(X) \ge 1$, and so $||X|| \ge 1$.

For more related results one can consult the paper:

R. Drnovšek, M. Kandić: *Commutators greater than a perturbation of the identity, J. Math. Anal. Appl.* 541 (2025) 128713.