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Motivation

PDE

For s ∈ [0, 1], τ ≥ 0, consider

xτ (τ, s) = xs(τ, s),

x(0, s) = x0(s),

x(τ, 1) = 0.

Abstract Cauchy problem (ACP)

On X = {f ∈ C[0, 1] : f(1) = 0},

ẋ(τ) = Ax(τ), x(0) = x0;

where

D (A) = {f ∈ C
1[0, 1] : f(1) = f

′(1) = 0}

Af := f
′
.

PDE

For s ∈ [0, 1], τ ≥ 0, consider

xτ (τ, s) = xs(τ, s) +

∫ 1

0

x(τ, r) dr · h(s),

x(0, s) = x0(s),

x(τ, 1) = 0;

where h ∈ L1(0, 1)+.

Linear time-invariant (LTI) system

ẋ(τ) = Ax(τ) + Bx(τ), x(0) = x0;

with

B : X →

{
g ∈ D(0, 1)′ : g = ∂f

for some f ∈ X

}
x 7→

(∫ 1

0

x(r) dr

)
· h.
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Zooming-in on the abstract Cauchy problem

For a closed operator A on a Banach space X , consider

ẋ(τ) = Ax(τ), x(0) = x0. (ACP)

Fact: (ACP) has a mild solution if and only if A generates a C0-semigroup on X .
Definition

A family of bounded operators (T (t))t≥0 is called a C0-semigroup if

T (0) = id, T (t + s) = T (t)T (s) for all t, s ≥ 0,

and t 7→ T (t)x is continuous for each x.

Solution to (ACP): x(t) = T (t)x0.

Each semigroup is associated to a unique generator:

D (A) =
{

x ∈ X : lim
t↓0

T (t)x − x

t
exists

}
, Ax := lim

t↓0

T (t)x − x

t
.

Extrapolation space

X−1 : completion of X with ∥x∥−1 :=
∥∥(λ − A)−1x

∥∥ for fixed λ ∈ ρ(A).

Example: For X = {f ∈ C[0, 1] : f(1) = 0} and

D (A) = {f ∈ C
1[0, 1] : f(1) = f

′(1) = 0}, Af := f
′
,

X−1 = {g ∈ D(0, 1)′ : g = ∂f for some f ∈ X}1.
Fact: (T (t))t≥0 extends to C0-semigroup (T−1(t))t≥0 on X−1 whose generator A−1
extends A.

1Batkai, Jacob, Voigt, & Wintermayr
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Zooming-on the linear time-invariant (control) system

Consider the linear time-invariant system

ẋ(τ) = Ax(τ) + Bu(τ), τ ≥ 0

x(0) = x0

Fact: solutions have the form
x(τ) = T (τ)x0 +

∫ τ

0 T−1(τ − s)Bu(s) ds

A : generator of a C0-semigroup
(T (t))t≥0 on Banach space X

B ∈ L(U, X−1) (Banach space U )

X−1 : Completion of X with
∥x∥−1 :=

∥∥(λ − A)−1x
∥∥ for fixed

λ ∈ ρ(A).

Definition

For Z ⊆ L1
loc(R+, U), we say B is

zero-class

Z-admissible if for some (hence, all) τ > 0,

Φτ : Z([0, τ ], U) → X−1, u 7→

∫ τ

0

T−1(τ − s)Bu(s) ds

maps into X

and if limτ↓0 ∥Φτ ∥Z([0,τ],U)→X = 0.

Examples: B ∈ L(U, X),

heat equation with Dirichlet boundary control and Z = L∞.

Properties: (a) L1-admissible
p∈(1,∞)

======⇒ Lp-admissible ⇒ L∞-admissible ⇒ C-admissible.

(b) If U = X , then zero-class C-admissibility ⇒ A−1 + B generates C0-semigroup on X .

How does positivity help in obtaining automatic admissibility?

→ We first need to understand the order structure of X−1!
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Order on X−1

Let A generate a positive C0-semigroup on a Banach lattice X . We define

X−1 ∋ f ≥ 0 :⇔ f ∈ X−1,+ := {f ∈ X : f ≥ 0}
∥ · ∥−1 .

On X = {f ∈ C[0, 1] : f(1) = 0}, the PDE

xτ (τ, s) = xs(τ, s) s ∈ [0, 1], τ ≥ 0,

x(0, s) = x(s) s ∈ [0, 1],

x(τ, 1) = 0 τ ≥ 0

is associated with the system ẋ(τ) = Ax(τ), x(0) = x0, where

D (A) = {f ∈ C1[0, 1] : f(1) = f ′(1) = 0}, Af := f ′.

The operator A generates a positive semigroup

and1

X−1 = {g ∈ D(0, 1)′ : g = ∂f for some f ∈ X},

X−1,+ = {g ∈ D(0, 1)′ : g = ∂f for some increasing f ∈ X}.

In particular, X−1 ⊋ X−1,+ − X−1,+.

In general, X−1 is a ordered Banach space with a normal cone but not a Banach lattice.

1Batkai, Jacob, Voigt, & Wintermayr

4 / 10



Order on X−1

Let A generate a positive C0-semigroup on a Banach lattice X . We define

X−1 ∋ f ≥ 0 :⇔ f ∈ X−1,+ := {f ∈ X : f ≥ 0}
∥ · ∥−1 .

On X = {f ∈ C[0, 1] : f(1) = 0}, the PDE

xτ (τ, s) = xs(τ, s) s ∈ [0, 1], τ ≥ 0,

x(0, s) = x(s) s ∈ [0, 1],

x(τ, 1) = 0 τ ≥ 0

is associated with the system ẋ(τ) = Ax(τ), x(0) = x0, where

D (A) = {f ∈ C1[0, 1] : f(1) = f ′(1) = 0}, Af := f ′.

The operator A generates a positive semigroup

and1

X−1 = {g ∈ D(0, 1)′ : g = ∂f for some f ∈ X},

X−1,+ = {g ∈ D(0, 1)′ : g = ∂f for some increasing f ∈ X}.

In particular, X−1 ⊋ X−1,+ − X−1,+.

In general, X−1 is a ordered Banach space with a normal cone but not a Banach lattice.

1Batkai, Jacob, Voigt, & Wintermayr

4 / 10



Order on X−1

Let A generate a positive C0-semigroup on a Banach lattice X . We define

X−1 ∋ f ≥ 0 :⇔ f ∈ X−1,+ := {f ∈ X : f ≥ 0}
∥ · ∥−1 .

On X = {f ∈ C[0, 1] : f(1) = 0}, the PDE

xτ (τ, s) = xs(τ, s) s ∈ [0, 1], τ ≥ 0,

x(0, s) = x(s) s ∈ [0, 1],

x(τ, 1) = 0 τ ≥ 0

is associated with the system ẋ(τ) = Ax(τ), x(0) = x0, where

D (A) = {f ∈ C1[0, 1] : f(1) = f ′(1) = 0}, Af := f ′.

The operator A generates a positive semigroup

and1

X−1 = {g ∈ D(0, 1)′ : g = ∂f for some f ∈ X},

X−1,+ = {g ∈ D(0, 1)′ : g = ∂f for some increasing f ∈ X}.

In particular, X−1 ⊋ X−1,+ − X−1,+.

In general, X−1 is a ordered Banach space with a normal cone but not a Banach lattice.

1Batkai, Jacob, Voigt, & Wintermayr

4 / 10



Order on X−1

Let A generate a positive C0-semigroup on a Banach lattice X . We define

X−1 ∋ f ≥ 0 :⇔ f ∈ X−1,+ := {f ∈ X : f ≥ 0}
∥ · ∥−1 .

On X = {f ∈ C[0, 1] : f(1) = 0}, the PDE

xτ (τ, s) = xs(τ, s) s ∈ [0, 1], τ ≥ 0,

x(0, s) = x(s) s ∈ [0, 1],

x(τ, 1) = 0 τ ≥ 0

is associated with the system ẋ(τ) = Ax(τ), x(0) = x0, where
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De-tour to order properties of X−1

Let A: generate positive C0-semigroup on X (Banach lattice) with 0 ∈ ρ(A),

X−1 :=
(

X,
∥∥A−1 ·

∥∥)∼
and X−1,+ := X+

∥ · ∥−1

Order properties of X preserved by X−1:

1

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge.

In case (b), X+ is also a face of X−1,+.

Order properties of span X−1,+

2

X has order continuous norm ⇒ span X−1,+ is also a Banach lattice!

Order properties of X preserved by span X−1,+: (a) Order continuous norm, (b) KB-space.

Open question

Is span X−1,+ a Banach lattice if X doesn’t have order continuous norm?

Some related results2

Let k ∈ N and p ∈ (1, ∞). Then span W −k.p(Ω)+ is a KB-space if Ω = Rd or (a, b).

1A., Glück, Paunonen, & Schwenninger
2A., Glück, & Schwenninger
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Automatic zero-class C-admissibility

B is called zero-class C-admissible if

Φτ : u 7→

∫ τ

0

T−1(τ − s)Bu(s) ds

satisfies limτ↓0∥Φτ ∥C([0,τ],U)→X = 0.

A : generator of C0-semigroup
(T (t))t≥0 on Banach space X

B : U
bounded−−−−−→ X−1 (Banach space U )

WLOG : {λ ∈ C : Re λ ≥ 0} ⊆ ρ(A)

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, (T (t))t≥0 and B are positive, and r(A−1B) < 1.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, (T (t))t≥0 is positive, and B(BU ) ⊆ [b1, b2].

1Tent (step) functions
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∫ τ
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Example
On X = {f ∈ C[0, 1] : f(1) = 0}, consider

D (A) = {f ∈ C
1[0, 1] : f(1) = f

′(1) = 0}, Af := f
′
.

Let µ: finite continuous positive Borel measure on (0, 1) and h ∈ L1(0, 1). Then

f 7→ B1f :=

∫ 1

0
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Thus, Bi is zero-class C-admissible ⇒ A−1 + Bi generates C0-semigroup on X .
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Linear time-invariant (observation) system

Consider the linear time-invariant system

ẋ(τ) = Ax(τ), x(0) = x0

y(τ) = Cx(τ).

A : generator of a C0-semigroup
(T (t))t≥0 on Banach space X

C : D (A) bounded−−−−−→ Y (Banach space)

Fact: (T (t))t≥0 leaves D (A) invariant.

Definition

C is called L1-admissible if

Ψτ : D (A) → L1([0, τ ], Y ), x 7→ CT ( · )x

has a bounded extension to X for some (hence, all) τ > 0.

Example: C ∈ L(X, Y ).
Example: Heat equation on L2[0, 1] with Dirichlet BC and point observation.
Non-example: X = Y : reflexive & C = A with D (A) ̸= X .1

How does positivity help in obtaining automatic admissibility?

1Jacob, Schwenninger, & Wintermayr
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ẋ(τ) = Ax(τ), x(0) = x0

y(τ) = Cx(τ).

A : generator of a C0-semigroup
(T (t))t≥0 on Banach space X

C : D (A) bounded−−−−−→ Y (Banach space)

Fact: (T (t))t≥0 leaves D (A) invariant.

Definition

C is called L1-admissible if

Ψτ : D (A) → L1([0, τ ], Y ), x 7→ CT ( · )x

has a bounded extension to X for some (hence, all) τ > 0.

Example: C ∈ L(X, Y ).
Example: Heat equation on L2[0, 1] with Dirichlet BC and point observation.
Non-example: X = Y : reflexive & C = A with D (A) ̸= X .1

How does positivity help in obtaining automatic admissibility?

1Jacob, Schwenninger, & Wintermayr

7 / 10



Linear time-invariant (observation) system

Consider the linear time-invariant system
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When does positivity imply L1-admissibility?

C is called L1-admissible if
Ψτ : D (A) → L

1([0, τ ], Y ), x 7→ CT ( · )x

extends boundedly to X for all τ > 0.

A : generator of a C0-semigroup
(T (t))t≥0 on Banach space X

C : D (A) bounded−−−−−→ Y (Banach space)

Theorem (Wintermayr)
Sufficient: X : Banach lattice, Y : AL-space, and (T (t))t≥0 & C: positive.

Proposition (A., Glück, Paunonen, Schwenninger)
Sufficient: X, Y : ordered Banach spaces1, (T (t))t≥0 & C: positive, and C: finite rank.

1X+ : generating and normal
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Proof (outline):

Tweaking Wintermayr’s proof, we can weaken the order properties to

X, Y : ordered Banach spaces1 such that norm on Y is additive on Y+.

Finite rank ⇒ ∃ equivalent norm on Rg C additive on (Rg C)+.

So,

∥Ψτ x∥L1([0,τ ],Y ) ≤ ∥id∥Rg C→Y ∥Ψτ ∥X→L1([0,τ ],Rg C) ∥x∥X ∀ x ∈ D (A) .

Hence, C is L1-admissible.
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Systems with control and observation

Let X : Banach lattice, U : AM-space, and suppose

A : generator of positive C0-semigroup (T (t))t≥0 on X and B : U
positive−−−−−→ X−1.

Wlog, {λ ∈ C : Re λ ≥ 0} ⊆ ρ(A).

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If U = X and r(A−1B) < 1, then

D (AB) := {f ∈ X : (A−1 + B)f ∈ X}, AB := (A−1 + B)|X

generates a positive C0-semigroup on X .

Theorem (Barbieri & Engel)

If C : X
positive

−−−−→ U and r(CA−1B) < 1, then

D (ABC) := {f ∈ X : (A−1 + BC)f ∈ X}, ABC := (A−1 + BC)|X

generates a positive C0-semigroup on X .

Application: Let Am: differential operator with maximal domain on a Banach lattice X ,

G : D (Am) onto−−→ ∂X (AM-space with unit) such that

∃ λ :
(

G|ker(λ−Am)

)−1
∈ L(∂X, X)+, and Φ : X

positive
−−−−→ ∂X . If Am|ker G

generates a

positive semigroup on X , then so does Am|ker(G−Φ)
.
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