Institute of Analysis, Leibniz University Hannover

Positivity in infinite-dimensional time-invariant systems

Positivity XII, Tunisia

June 3, 2025

Sahiba Arora

Motivation

PDE

For
$$s\in[0,1], au\geq 0$$
, consider
$$x_{\tau}(\tau,s)=x_s(\tau,s),$$

$$x(0,s)=x_0(s),$$

$$x(\tau,1)=0.$$

For $s\in[0,1], \tau\geq0$, consider $x_{\tau}(\tau,s)=x_{s}(\tau,s),$ $x(0,s)=x_{0}(s),$ $x(\tau,1)=0.$

Abstract Cauchy problem (ACP)

On
$$X = \{f \in C[0,1]: f(1) = 0\},$$

$$\dot{x}(\tau) = Ax(\tau), x(0) = x_0;$$

For
$$s\in[0,1], au\geq0$$
, consider
$$x_{\tau}(\tau,s)=x_s(\tau,s),$$

$$x(0,s)=x_0(s),$$

$$x(\tau,1)=0.$$

Abstract Cauchy problem (ACP)

On
$$X = \{f \in C[0,1]: f(1) = 0\},$$

$$\dot{x}(\tau) = Ax(\tau), x(0) = x_0;$$

where

$$D(A) = \{ f \in C^{1}[0, 1] : f(1) = f'(1) = 0 \}$$
$$Af := f'.$$

For $s\in[0,1], au\geq0$, consider $x_{\tau}(\tau,s)=x_s(\tau,s),$ $x(0,s)=x_0(s),$ $x(\tau,1)=0.$

Abstract Cauchy problem (ACP)

On
$$X = \{f \in C[0,1]: f(1) = 0\}$$
,
$$\dot{x}(\tau) = Ax(\tau), x(0) = x_0;$$

where

$$D(A) = \{ f \in C^{1}[0, 1] : f(1) = f'(1) = 0 \}$$
$$Af := f'.$$

PDE

For
$$s\in[0,1], \tau\geq0$$
, consider
$$x_{\tau}(\tau,s)=x_s(\tau,s)+\int_0^1x(\tau,r)\;dr\cdot h(s),$$

$$x(0,s)=x_0(s),$$

$$x(\tau,1)=0;$$
 where $h\in L^1(0,1)_+.$

For $s \in [0, 1], \tau \geq 0$, consider $x_{\tau}(\tau,s) = x_s(\tau,s),$ $x(0,s) = x_0(s),$ $x(\tau, 1) = 0.$

Abstract Cauchy problem (ACP)

On
$$X = \{f \in C[0,1]: f(1) = 0\}$$
,
$$\dot{x}(\tau) = Ax(\tau), x(0) = x_0;$$

where

$$D(A) = \{ f \in C^{1}[0, 1] : f(1) = f'(1) = 0 \}$$
$$Af := f'.$$

PDF

For
$$s\in[0,1], \tau\geq0$$
, consider
$$x_\tau(\tau,s)=x_s(\tau,s)+\int_0^1x(\tau,r)\;dr\cdot h(s),$$

$$x(0,s)=x_0(s),$$

$$x(\tau,1)=0;$$

where $h \in L^1(0,1)_{\perp}$.

Linear time-invariant (LTI) system

$$\dot{x}(\tau) = Ax(\tau) + Bx(\tau), x(0) = x_0;$$

with

$$B: X \to \left\{ \begin{aligned} g &\in \mathcal{D}(0,1)': g = \partial f \\ \text{for some } f \in X \end{aligned} \right\}$$
$$x \mapsto \left(\int_0^1 x(r) \ dr \right) \cdot h.$$

For a closed operator ${\cal A}$ on a Banach space ${\cal X}$, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

For a closed operator \boldsymbol{A} on a Banach space \boldsymbol{X} , consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

For a closed operator ${\cal A}$ on a Banach space ${\cal X}$, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

$$T(0)=\operatorname{id}\text{, }T(t+s)=T(t)T(s)\text{ for all }t,s\geq0\text{,}$$

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}$, T(t+s)=T(t)T(s) for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x.

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}$, T(t+s)=T(t)T(s) for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x.

Solution to (ACP): $x(t) = T(t)x_0$.

For a closed operator ${\cal A}$ on a Banach space ${\cal X}$, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}, T(t+s)=T(t)T(s)$ for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x. Solution to (ACP): $x(t)=T(t)x_0$.

Each semigroup is associated to a unique generator:

$$D\left(A\right) = \left\{x \in X : \lim_{t \downarrow 0} \frac{T(t)x - x}{t} \text{ exists}\right\}, \qquad Ax := \lim_{t \downarrow 0} \frac{T(t)x - x}{t}.$$

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}, T(t+s)=T(t)T(s)$ for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x. Solution to (ACP): $x(t)=T(t)x_0$.

Each semigroup is associated to a unique generator:

$$D\left(A\right) = \left\{x \in X: \lim_{t \downarrow 0} \frac{T(t)x - x}{t} \text{ exists}\right\}, \qquad Ax := \lim_{t \downarrow 0} \frac{T(t)x - x}{t}.$$

Extrapolation space

$$X_{-1}: \text{completion of } X \text{ with } \|x\|_{-1}:=\left\|(\lambda-A)^{-1}x\right\| \text{ for fixed } \lambda \in \rho(A).$$

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}, T(t+s)=T(t)T(s)$ for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x. Solution to (ACP): $x(t)=T(t)x_0$.

Each semigroup is associated to a unique generator:

$$D\left(A\right) = \left\{x \in X: \lim_{t \downarrow 0} \frac{T(t)x - x}{t} \text{ exists}\right\}, \qquad Ax := \lim_{t \downarrow 0} \frac{T(t)x - x}{t}.$$

Extrapolation space

 $X_{-1}: \text{completion of } X \text{ with } \left\|x\right\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \text{ for fixed } \lambda \in \rho(A).$

Example: For $X=\{f\in C[0,1]:f(1)=0\}$ and

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f',$$

 $X_{-1} = \{g \in \mathcal{D}(0,1)' : g = \partial f \text{ for some } f \in X\}^{1}.$

¹Batkai, Jacob, Voigt, & Wintermayr

For a closed operator A on a Banach space X, consider

$$\dot{x}(\tau) = Ax(\tau), \ x(0) = x_0. \tag{ACP}$$

Fact: (ACP) has a mild solution if and only if A generates a C_0 -semigroup on X.

Definition

A family of bounded operators $(T(t))_{t\geq 0}$ is called a C_0 -semigroup if

 $T(0)=\operatorname{id}_{\mathbf{t}}T(t+s)=T(t)T(s)$ for all $t,s\geq 0$, and $t\mapsto T(t)x$ is continuous for each x.

Solution to (ACP): $x(t) = T(t)x_0$.

Each semigroup is associated to a unique generator:

$$D\left(A\right) = \left\{x \in X : \lim_{t \downarrow 0} \frac{T(t)x - x}{t} \text{ exists}\right\}, \qquad Ax := \lim_{t \downarrow 0} \frac{T(t)x - x}{t}.$$

Extrapolation space

 $X_{-1}: \text{completion of } X \text{ with } \left\|x\right\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \text{ for fixed } \lambda \in \rho(A).$

Example: For $X=\{f\in C[0,1]: f(1)=0\}$ and

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f',$$

 $X_{-1} = \{ g \in \mathcal{D}(0,1)' : g = \partial f \text{ for some } f \in X \}^1.$

Fact: $(T(t))_{t\geq 0}$ extends to C_0 -semigroup $(T_{-1}(t))_{t\geq 0}$ on X_{-1} whose generator A_{-1} extends A.

¹Batkai, Jacob, Voigt, & Wintermayr

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

 $\begin{array}{ll} A: \ \ {\rm generator} \ {\rm of} \ {\rm a} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

$$A: \mbox{ generator of a } C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \mbox{ on Banach space } X$$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

$$A: \mbox{ generator of a } C_0\mbox{-semigroup} \ (T(t))_{t\geq 0} \mbox{ on Banach space } X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \ \mbox{with} \\ \|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \ \mbox{for fixed} \\ \lambda \in \rho(A). \end{array}$$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$
$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \mbox{ generator of a C_0-semigroup} \\ (T(t))_{t\geq 0} \mbox{ on Banach space } X \\ B \in \mbox{ $\mathcal{L}(U,X_{-1})$ (Banach space U)}$$

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \ \mbox{with} \\ \|x\|_{-1}:=\left\|(\lambda-A)^{-1}x\right\| \ \mbox{for fixed} \\ \lambda \in \rho(A). \end{array}$$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

 $A: \ \operatorname{generator}$ of a C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X

 $B \in \mathcal{L}(U, X_{-1})$ (Banach space U)

 $X_{-1}:$ Completion of X with $\|x\|_{-1}:=\left\|(\lambda-A)^{-1}x\right\| \text{ for fixed } \lambda\in\rho(A).$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is

Z-admissible if for some (hence, all) au>0,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \quad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) ds$$

maps into X

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$X_{-1}:$$
 Completion of X with $\|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\|$ for fixed $\lambda\in\rho(A).$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) $\tau>0$,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \quad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) ds$$

maps into X and if $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{Z([0,\tau],U)\to X}=0$.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$\begin{array}{c} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \ \text{on Banach space} \ X \end{array}$$

$$B \in \ \mathcal{L}(U,X_{-1})$$
 (Banach space U)

$$X_{-1}:$$
 Completion of X with $\|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\|$ for fixed $\lambda\in \rho(A).$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) au>0,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{Z([0,\tau],U)\to X}=0$.

Examples: $B \in \mathcal{L}(U, X)$,

Consider the linear time-invariant system

$$\begin{split} \dot{x}(\tau) &= Ax(\tau) + Bu(\tau), \quad \tau \geq 0 \\ x(0) &= x_0 \end{split}$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \mbox{ with } \\ \left\|x\right\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \mbox{ for fixed } \\ \lambda \in \rho(A). \end{array}$$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) au>0,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{Z([0,\tau],U)\to X}=0$.

Examples: $B \in \mathcal{L}(U,X)$, heat equation with Dirichlet boundary control and $Z = L^{\infty}$.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \mbox{ with } \\ \left\|x\right\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \mbox{ for fixed } \\ \lambda \in \rho(A). \end{array}$$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) $\tau>0$,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{Z([0,\tau],U)\to X}=0$.

Examples: $B \in \mathcal{L}(U, X)$, heat equation with Dirichlet boundary control and $Z = L^{\infty}$.

Properties: (a) L^1 -admissible $\xrightarrow{p \in (1,\infty)} L^p$ -admissible $\Rightarrow L^\infty$ -admissible \Rightarrow C-admissible.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \ \mbox{with} \\ \|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \ \mbox{for fixed} \\ \lambda \in \rho(A). \end{array}$$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) $\tau>0$,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{Z([0,\tau],U)\to X}=0$.

Examples: $B \in \mathcal{L}(U,X)$, heat equation with Dirichlet boundary control and $Z = L^{\infty}$.

Properties: (a) L^1 -admissible $\xrightarrow{p \in (1,\infty)} L^p$ -admissible $\Rightarrow L^\infty$ -admissible \Rightarrow C-admissible.

(b) If U=X, then zero-class C-admissibility $\Rightarrow A_{-1}+B$ generates C_0 -semigroup on X.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau) + Bu(\tau), \quad \tau \ge 0$$

$$x(0) = x_0$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$X_{-1}:$$
 Completion of X with $\|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\|$ for fixed $\lambda\in\rho(A).$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) au>0,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau \downarrow 0} \|\Phi_{\tau}\|_{Z([0,\tau],U) \to X} = 0$.

Examples: $B \in \mathcal{L}(U, X)$, heat equation with Dirichlet boundary control and $Z = L^{\infty}$.

Properties: (a) L^1 -admissible $\stackrel{p \in (1,\infty)}{\Longrightarrow} L^p$ -admissible $\Rightarrow L^\infty$ -admissible \Rightarrow C-admissible.

(b) If U = X, then zero-class C-admissibility $\Rightarrow A_{-1} + B$ generates C_0 -semigroup on X.

How does positivity help in obtaining automatic admissibility?

Consider the linear time-invariant system

$$\begin{split} \dot{x}(\tau) &= Ax(\tau) + Bu(\tau), \quad \tau \geq 0 \\ x(0) &= x_0 \end{split}$$

Fact: solutions have the form

$$x(\tau) = T(\tau)x_0 + \int_0^{\tau} T_{-1}(\tau - s)Bu(s) ds$$

$$\begin{array}{c} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \ \text{on Banach space} \ X \end{array}$$

$$B \in \mathcal{L}(U, X_{-1})$$
 (Banach space U)

$$\begin{array}{ll} X_{-1}: \ \mbox{Completion of } X \mbox{ with } \\ \|x\|_{-1}:=\left\|\left(\lambda-A\right)^{-1}x\right\| \mbox{ for fixed } \\ \lambda \in \rho(A). \end{array}$$

Definition

For $Z\subseteq L^1_{\mathrm{loc}}(\mathbb{R}_+,U)$, we say B is zero-class Z-admissible if for some (hence, all) $\tau>0$,

$$\Phi_{\tau}: Z([0,\tau],U) \to X_{-1}, \qquad u \mapsto \int_{0}^{\tau} T_{-1}(\tau-s)Bu(s) \ ds$$

maps into X and if $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{Z([0,\tau],U)\to X} = 0$.

Examples: $B \in \mathcal{L}(U, X)$, heat equation with Dirichlet boundary control and $Z = L^{\infty}$.

Properties: (a) L^1 -admissible $\xrightarrow{p \in (1,\infty)} L^p$ -admissible $\Rightarrow L^\infty$ -admissible \Rightarrow C-admissible.

(b) If U = X, then zero-class C-admissibility $\Rightarrow A_{-1} + B$ generates C_0 -semigroup on X.

How does positivity help in obtaining automatic admissibility?

 \rightarrow We first need to understand the order structure of X_{-1} !

Order on X_{-1}

Let A generate a positive C_0 -semigroup on a Banach lattice X. We define

$$X_{-1}\ni f\geq 0:\Leftrightarrow f\in X_{-1,+}:=\overline{\{f\in X: f\geq 0\}}^{\parallel\,\cdot\,\parallel_{-1}}.$$

$$X_{-1} \ni f \ge 0 : \Leftrightarrow f \in X_{-1,+} := \overline{\{f \in X : f \ge 0\}}^{\|\cdot\|_{-1}}.$$

On
$$X=\{f\in C[0,1]:f(1)=0\}$$
, the PDE

$$\begin{aligned} x_{\tau}(\tau,s) &= x_s(\tau,s) & s \in [0,1], \tau \geq 0, \\ x(0,s) &= x(s) & s \in [0,1], \\ x(\tau,1) &= 0 & \tau \geq 0 \end{aligned}$$

is associated with the system $\dot{x}(\tau) = Ax(\tau), x(0) = x_0$, where

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f'.$$

$$X_{-1} \ni f \ge 0 : \Leftrightarrow f \in X_{-1,+} := \overline{\{f \in X : f \ge 0\}}^{\|\cdot\|_{-1}}.$$

On
$$X=\{f\in C[0,1]:f(1)=0\}$$
, the PDE

$$\begin{aligned} x_{\tau}(\tau,s) &= x_s(\tau,s) & s \in [0,1], \tau \geq 0, \\ x(0,s) &= x(s) & s \in [0,1], \\ x(\tau,1) &= 0 & \tau \geq 0 \end{aligned}$$

is associated with the system $\dot{x}(\tau) = Ax(\tau), x(0) = x_0$, where

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

The operator A generates a positive semigroup

$$X_{-1} \ni f \ge 0 : \Leftrightarrow f \in X_{-1,+} := \overline{\{f \in X : f \ge 0\}}^{\|\cdot\|_{-1}}.$$

On
$$X=\{f\in C[0,1]:f(1)=0\}$$
, the PDE

$$x_{\tau}(\tau, s) = x_s(\tau, s) \qquad \qquad s \in [0, 1], \tau \ge 0,$$

$$x(0, s) = x(s) \qquad \qquad s \in [0, 1],$$

$$x(\tau, 1) = 0 \qquad \qquad \tau \ge 0$$

is associated with the system $\dot{x}(\tau) = Ax(\tau), \dot{x}(0) = x_0$, where

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

The operator A generates a positive semigroup and 1

$$\begin{split} X_{-1} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some } f \in X\}, \\ X_{-1,+} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some increasing } f \in X\}. \end{split}$$

¹Batkai, Jacob, Voigt, & Wintermayr

$$X_{-1} \ni f \ge 0 : \Leftrightarrow f \in X_{-1,+} := \overline{\{f \in X : f \ge 0\}}^{\|\cdot\|_{-1}}.$$

On $X=\{f\in C[0,1]:f(1)=0\}$, the PDE

$$x_{\tau}(\tau, s) = x_{s}(\tau, s)$$
 $s \in [0, 1], \tau \ge 0,$
 $x(0, s) = x(s)$ $s \in [0, 1],$
 $x(\tau, 1) = 0$ $\tau \ge 0$

is associated with the system $\dot{x}(\tau) = Ax(\tau), x(0) = x_0$, where

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

The operator A generates a positive semigroup and

$$\begin{split} X_{-1} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some } f \in X\}, \\ X_{-1,+} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some increasing } f \in X\}. \end{split}$$

In particular, $X_{-1} \supseteq X_{-1,+} - X_{-1,+}$.

¹Batkai, Jacob, Voigt, & Wintermayr

$$X_{-1} \ni f \ge 0 : \Leftrightarrow f \in X_{-1,+} := \overline{\{f \in X : f \ge 0\}}^{\|\cdot\|_{-1}}.$$

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, the PDE

$$x_{\tau}(\tau, s) = x_{s}(\tau, s) \qquad s \in [0, 1], \tau \ge 0,$$

$$x(0, s) = x(s) \qquad s \in [0, 1],$$

$$x(\tau, 1) = 0 \qquad \tau \ge 0$$

is associated with the system $\dot{x}(\tau) = Ax(\tau), \dot{x(0)} = x_0$, where

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

The operator A generates a positive semigroup and 1

$$\begin{split} X_{-1} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some } f \in X\}, \\ X_{-1,+} &= \{g \in \mathcal{D}(0,1)': g = \partial f \text{ for some increasing } f \in X\}. \end{split}$$

In particular, $X_{-1} \supseteq X_{-1,+} - X_{-1,+}$.

In general, X_{-1} is a ordered Banach space with a normal cone but not a Banach lattice.

¹Batkai, Jacob, Voigt, & Wintermayr

De-tour to order properties of X_{-1}

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim} \text{ and } X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$$

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim} \text{ and } X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$$

Order properties of X preserved by X_{-1} :

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim}$$
 and $X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge.

¹A., Glück, Paunonen, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim}$$
 and $X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge.

In case (b), X_+ is also a face of $X_{-1,+}$.

¹A., Glück, Paunonen, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := \left(X, \left\|A^{-1} \cdot \right\|\right)^{\sim} \quad \text{and} \quad X_{-1,+} := \overline{X_{+}}^{\parallel \cdot \parallel_{-1}}$$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge. In case (b), X_+ is also a face of $X_{-1,+}$.

Order properties of span $X_{-1,+}$

¹A., Glück, Paunonen, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim}$$
 and $X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge. In case (b), X_+ is also a face of $X_{-1,+}$.

Order properties of span $X_{-1,+}^2$

X has order continuous norm $\Rightarrow \operatorname{span} X_{-1,+}$ is also a Banach lattice!

¹A., Glück, Paunonen, & Schwenninger

²A., Glück, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim} \text{ and } X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge. In case (b), X_+ is also a face of $X_{-1,+}$.

Order properties of span $X_{-1,+}^2$

X has order continuous norm $\Rightarrow \operatorname{span} X_{-1,+}$ is also a Banach lattice!

Order properties of X preserved by $\operatorname{span} X_{-1,+}$: (a) Order continuous norm, (b) KB-space.

¹A., Glück, Paunonen, & Schwenninger

²A., Glück, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim} \text{ and } X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge. In case (b), X_+ is also a face of $X_{-1,+}$.

Order properties of span $X_{-1,+}^2$

X has order continuous norm $\Rightarrow \operatorname{span} X_{-1,+}$ is also a Banach lattice!

Order properties of X preserved by $\operatorname{span} X_{-1,+}$: (a) Order continuous norm, (b) KB-space.

Open question

Is $\operatorname{span} X_{-1,+}$ a Banach lattice if X doesn't have order continuous norm?

¹A., Glück, Paunonen, & Schwenninger

²A., Glück, & Schwenninger

Let A: generate positive C_0 -semigroup on X (Banach lattice) with $0 \in \rho(A)$,

$$X_{-1} := (X, ||A^{-1} \cdot ||)^{\sim}$$
 and $X_{-1,+} := \overline{X_{+}}^{||\cdot||_{-1}}$

Order properties of X preserved by X_{-1} :

(a) Norm-bounded increasing nets are norm-convergent, (b) Cone is a face of bidual wedge. In case (b), X_+ is also a face of $X_{-1,+}$.

Order properties of span $X_{-1,+}^2$

X has order continuous norm $\Rightarrow \operatorname{span} X_{-1,+}$ is also a Banach lattice!

Order properties of X preserved by $\operatorname{span} X_{-1,+}$: (a) Order continuous norm, (b) KB-space.

Open question

Is $\operatorname{span} X_{-1,+}$ a Banach lattice if X doesn't have order continuous norm?

Some related results²

Let $k \in \mathbb{N}$ and $p \in (1, \infty)$. Then $\operatorname{span} W^{-k,p}(\Omega)_+$ is a KB-space if $\Omega = \mathbb{R}^d$ or (a,b).

¹A., Glück, Paunonen, & Schwenninger

²A., Glück, & Schwenninger

 \boldsymbol{B} is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_{0}^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B:\ U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

 \boldsymbol{B} is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B:\ U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U=X is AM-space, $(T(t))_{t\geq 0}$ and B are positive, and $\mathbf{r}(A^{-1}B)<1$.

 ${\cal B}$ is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B:\ U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

B is called zero-class $\operatorname{C-admissible}$ if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s) Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U=X is AM-space, (T(t)) i.e., B maps the unit ball of U into an order bounded subset of X_{-1}

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X}=0.$

 $A: \ {
m generator} \ {
m of} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on} \ {
m Banach} \ {
m space} \ X$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\int_0^{\tau} T_{-1}(\tau - s)b_1 \, ds \le \Phi_{\tau} u \le \int_0^{\tau} T_{-1}(\tau - s)b_2 \, ds$$

¹Tent (step) functions

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0.$

 $A: \ \ {
m generator \ of} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ \ {
m on \ Banach \ space} \ X$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{1} ds}_{\in D(A_{-1}) = X} \le \Phi_{\tau} u \le \underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{2} ds}_{\in D(A_{-1}) = X}.$$

¹Tent (step) functions

6 / 10

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0.$

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B: U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{1} ds}_{\in D(A_{-1}) = X} \le \Phi_{\tau} u \le \underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{2} ds}_{\in D(A_{-1}) = X}.$$

Therefore, $\Phi_{\tau}u \in X$

¹Tent (step) functions

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s) Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $A: \ {
m generator} \ {
m of} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on} \ {
m Banach} \ {
m space} \ X$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{1} ds}_{\in D(A_{-1}) = X} \le \Phi_{\tau} u \le \underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{2} ds}_{\in D(A_{-1}) = X}.$$

Therefore, $\Phi_{\tau}u\in X$ and by normality of cone $\exists \ c>0$ such that

$$\|\Phi_{\tau}u\|_{X} \le c \max_{i=1,2} \left\| \int_{0}^{\tau} T_{-1}(\tau-s)b_{i} \ ds \right\|_{X}$$

¹Tent (step) functions

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s) Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0}\|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X}=0$.

$$A: \ \operatorname{generator} \operatorname{of} C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ \operatorname{on} \operatorname{Banach} \operatorname{space} X$$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t>0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{1} ds}_{\in D(A_{-1}) = X} \le \Phi_{\tau} u \le \underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{2} ds}_{\in D(A_{-1}) = X}.$$

Therefore, $\Phi_{\tau}u \in X$ and by normality of cone $\exists c > 0$ such that

$$\|\Phi_{\tau}u\|_{X} \le c \max_{i=1,2} \left\| A_{-1} \int_{0}^{\tau} T_{-1}(\tau - s)b_{i} \ ds \right\|_{-1}$$

¹Tent (step) functions

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau \downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U) \to X} = 0.$

$$A: \ \operatorname{generator} \operatorname{of} C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ \operatorname{on} \operatorname{Banach} \operatorname{space} X$$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t>0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Proof (outline): For each $u \in T([0,\tau],U)^1$ with $\|u\|_{\infty} \leq 1$,

$$\underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{1} ds}_{\in D(A_{-1}) = X} \le \Phi_{\tau} u \le \underbrace{\int_{0}^{\tau} T_{-1}(\tau - s)b_{2} ds}_{\in D(A_{-1}) = X}.$$

Therefore, $\Phi_{\tau}u\in X$ and by normality of cone $\exists \ c>0$ such that

$$\|\Phi_{\tau}u\|_{X} \leq c \max_{i=1,2} \left\| A_{-1} \int_{0}^{\tau} T_{-1}(\tau - s)b_{i} \ ds \right\|_{1} = c \max_{i=1,2} \|T_{-1}(\tau)b_{i} - b_{i}\|_{-1} \xrightarrow{\tau \downarrow 0} 0. \quad \Box$$

¹Tent (step) functions

B is called zero-class $\operatorname{C-admissible}$ if

$$\Phi_{\tau}: u \mapsto \int_{0}^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Example

On
$$X = \{ f \in C[0,1] : f(1) = 0 \}$$
, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

B is called zero-class $\operatorname{C-admissible}$ if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $B: U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Example

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f'.$$

Let μ : finite continuous positive Borel measure on (0,1) and $h \in L^1(0,1)$.

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0.$

 $\begin{array}{c} A: \ \ {\rm generator} \ {\rm of} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $B: U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Example

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f'.$$

Let μ : finite continuous positive Borel measure on (0,1) and $h \in L^1(0,1)$. Then

$$f \mapsto B_1 f := \int_0^1 f(s) \, ds \cdot \mu \quad \& \quad f \mapsto B_2 f := hf$$

lie in $\mathcal{L}(X, X_{-1})$,

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s) Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0.$

 $\begin{array}{c} A: \ \ \text{generator of} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \text{on Banach space} \ X \end{array}$

 $B:\ U \xrightarrow{\mathsf{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}:\ \{\lambda\in\mathbb{C}:\operatorname{Re}\lambda\geq 0\}\subseteq\rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t>0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Example

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f'.$$

Let μ : finite continuous positive Borel measure on (0,1) and $h \in L^1(0,1)$. Then

$$f \mapsto B_1 f := \int_0^1 f(s) \, ds \cdot \mu \quad \& \quad f \mapsto B_2 f := hf$$

lie in $\mathcal{L}(X,X_{-1})$, $B_1(B_X)\subseteq [-\mu,\mu]$ & $B_2(B_X)\subseteq [-\left|h\right|,\left|h\right|]$.

 ${\it B}$ is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_0^{\tau} T_{-1}(\tau - s) Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $\begin{array}{c} A: \ \ {\rm generator} \ {\rm of} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}: \ \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \ge 0\} \subseteq \rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t\geq 0}$ is positive, and $B(B_U)\subseteq [b_1,b_2]$.

Example

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \quad Af := f'.$$

Let μ : finite continuous positive Borel measure on (0,1) and $h \in L^1(0,1)$. Then

$$f \mapsto B_1 f := \int_0^1 f(s) \, ds \cdot \mu \quad \& \quad f \mapsto B_2 f := hf$$

lie in $\mathcal{L}(X,X_{-1})$, $B_1(B_X)\subseteq [-\mu,\mu]$ & $B_2(B_X)\subseteq [-|h|,|h|]$. Thus, B_i is zero-class C-admissible

B is called zero-class C-admissible if

$$\Phi_{\tau}: u \mapsto \int_{0}^{\tau} T_{-1}(\tau - s)Bu(s) \, ds$$

satisfies $\lim_{\tau\downarrow 0} \|\Phi_{\tau}\|_{\mathrm{C}([0,\tau],U)\to X} = 0$.

 $A: \ \operatorname{generator} \operatorname{of} C_0\operatorname{-semigroup} \ (T(t))_{t\geq 0} \ \operatorname{on} \operatorname{Banach} \operatorname{space} X$

 $B: U \xrightarrow{\text{bounded}} X_{-1}$ (Banach space U)

 $\mathsf{WLOG}: \ \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \ge 0\} \subseteq \rho(A)$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

Sufficient: U = X is AM-space, $(T(t))_{t \ge 0}$ and B are positive, and $r(A^{-1}B) < 1$.

Theorem (A., Glück, Paunonen, & Schwenninger)

Sufficient: X is a Banach lattice, $(T(t))_{t>0}$ is positive, and $B(B_U) \subseteq [b_1, b_2]$.

Example

On $X = \{ f \in C[0,1] : f(1) = 0 \}$, consider

$$D(A) = \{ f \in C^1[0,1] : f(1) = f'(1) = 0 \}, \qquad Af := f'.$$

Let μ : finite continuous positive Borel measure on (0,1) and $h \in L^1(0,1)$. Then

$$f \mapsto B_1 f := \int_0^1 f(s) \, ds \cdot \mu \quad \& \quad f \mapsto B_2 f := hf$$

lie in $\mathcal{L}(X,X_{-1})$, $B_1(B_X)\subseteq [-\mu,\mu]$ & $B_2(B_X)\subseteq [-|h|,|h|]$.

Thus, B_i is zero-class C-admissible $\Rightarrow A_{-1} + B_i$ generates C_0 -semigroup on X.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

 $y(\tau) = Cx(\tau).$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

 $y(\tau) = Cx(\tau).$

 $A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \text{on Banach space} \ X$

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$
$$y(\tau) = Cx(\tau).$$

 $\begin{array}{ll} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \ \text{on Banach space} \ X \end{array}$

 $C:\ D\left(A\right)\xrightarrow{\mathsf{bounded}}Y$ (Banach space)

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

 $y(\tau) = Cx(\tau).$

Fact: $(T(t))_{t>0}$ leaves D(A) invariant.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ {\rm a}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

 $y(\tau) = Cx(\tau).$

Fact: $(T(t))_{t\geq 0}$ leaves D(A) invariant.

 $\begin{array}{ll} A: \ \ {\rm generator} \ {\rm of} \ {\rm a} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Definition

C is called L^1 -admissible if

$$\Psi_{\tau}: D(A) \to L^1([0,\tau],Y), \qquad x \mapsto CT(\cdot)x$$

has a bounded extension to X for some (hence, all) $\tau > 0$.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$
$$y(\tau) = Cx(\tau).$$

Fact: $(T(t))_{t\geq 0}$ leaves D(A) invariant.

 $\begin{array}{ll} A: \ \ {\rm generator} \ {\rm of} \ {\rm a} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Definition

C is called L^1 -admissible if

$$\Psi_{\tau}: D(A) \to L^1([0,\tau],Y), \qquad x \mapsto CT(\cdot)x$$

has a bounded extension to X for some (hence, all) $\tau > 0$.

Example: $C \in \mathcal{L}(X,Y)$.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

$$y(\tau) = Cx(\tau).$$

Fact: $(T(t))_{t>0}$ leaves D(A) invariant.

 $\begin{array}{ll} A: \ \ {\rm generator} \ {\rm of} \ {\rm a} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Definition

C is called L^1 -admissible if

$$\Psi_{\tau}: D(A) \to L^1([0,\tau],Y), \qquad x \mapsto CT(\cdot)x$$

has a bounded extension to X for some (hence, all) $\tau > 0$.

Example: $C \in \mathcal{L}(X,Y)$.

Example: Heat equation on $L^2[0,1]$ with Dirichlet BC and point observation.

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$

$$y(\tau) = Cx(\tau).$$

Fact: $(T(t))_{t\geq 0}$ leaves D(A) invariant.

 $\begin{array}{ll} A: \ \ {\rm generator} \ {\rm of} \ {\rm a} \ C_0\mbox{-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Definition

C is called L^1 -admissible if

$$\Psi_{\tau}: D(A) \to L^1([0,\tau], Y), \qquad x \mapsto CT(\cdot)x$$

has a bounded extension to X for some (hence, all) $\tau > 0$.

Example: $C \in \mathcal{L}(X,Y)$.

Example: Heat equation on $L^2[0,1]$ with Dirichlet BC and point observation.

Non-example: X=Y: reflexive & C=A with $D\left(A\right)\neq X$.

¹Jacob, Schwenninger, & Wintermayr

Consider the linear time-invariant system

$$\dot{x}(\tau) = Ax(\tau), \quad x(0) = x_0$$
$$y(\tau) = Cx(\tau).$$

Fact: $(T(t))_{t\geq 0}$ leaves D(A) invariant.

 $\begin{array}{ll}A: \ \ {\rm generator}\ {\rm of}\ {\rm a}\ C_0\mbox{-semigroup}\\ (T(t))_{t\geq 0}\ \mbox{on Banach space}\ X\end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Definition

C is called L^1 -admissible if

$$\Psi_{\tau}: D(A) \to L^1([0,\tau], Y), \qquad x \mapsto CT(\cdot)x$$

has a bounded extension to X for some (hence, all) $\tau > 0$.

Example: $C \in \mathcal{L}(X,Y)$.

Example: Heat equation on $L^2[0,1]$ with Dirichlet BC and point observation.

Non-example: X = Y: reflexive & C = A with $D(A) \neq X$.

How does positivity help in obtaining automatic admissibility?

¹Jacob, Schwenninger, & Wintermayr

When does positivity imply L^1 -admissibility?

 $\begin{array}{l} C \text{ is called } L^1\text{-admissible if} \\ \Psi_\tau:D\left(A\right) \to L^1([0,\tau],Y), \ x \mapsto CT(\,\cdot\,)x \\ \text{extends boundedly to } X \text{ for all } \tau>0. \end{array}$

 $A: \ \mbox{generator of a C_0-semigroup} \\ (T(t))_{t\geq 0} \ \mbox{on Banach space X}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

$$\begin{array}{l} C \text{ is called } L^1\text{-admissible if} \\ \Psi_\tau:D\left(A\right) \to L^1([0,\tau],Y), \ x \mapsto CT(\,\cdot\,)x \\ \text{extends boundedly to } X \text{ for all } \tau > 0. \end{array}$$

 $\begin{array}{c} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \text{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0} \ \& \ C$: positive.

C is called L^1 -admissible if $\Psi_{\tau}:D\left(A\right)\to L^1([0,\tau],Y),\ x\mapsto CT(\,\cdot\,)x$ extends boundedly to X for all $\tau>0$.

 $\begin{array}{c} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \text{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\text{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}$ & C: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

 $^{^{1}}X_{\perp}$: generating and normal

C is called L^1 -admissible if $\Psi_{\tau}: D(A) \to L^1([0,\tau],Y), \ x \mapsto CT(\cdot)x$

extends boundedly to X for all $\tau > 0$.

 $\begin{array}{c} A: \ \ \text{generator of a} \ C_0\text{-semigroup} \\ (T(t))_{t\geq 0} \ \text{on Banach space} \ X \end{array}$

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}\ \&\ C$: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Proof (outline):

C is called L^1 -admissible if $\Psi_{\tau}:D(A)\to L^1([0,\tau],Y),\ x\mapsto CT(\,\cdot\,)x$ extends boundedly to X for all $\tau>0$.

 $A: \ \operatorname{generator}$ of a C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}\ \&\ C$: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Proof (outline): Tweaking Wintermayr's proof, we can weaken the order properties to

 $^{^{1}}X_{\perp}$: generating and normal

C is called L^1 -admissible if $\Psi_{\tau}:D(A)\to L^1([0,\tau],Y),\ x\mapsto CT(\,\cdot\,)x$ extends boundedly to X for all $\tau>0$.

 $A: \ {
m generator \ of \ a} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on \ Banach \ space} \ X$

 $C: D(A) \xrightarrow{\text{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}$ & C: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Proof (outline): Tweaking Wintermayr's proof, we can weaken the order properties to

X,Y: ordered Banach spaces¹ such that norm on Y is additive on Y_+ .

 $^{^{1}}X_{\perp}$: generating and normal

C is called L^1 -admissible if $\Psi_{\tau}:D(A)\to L^1([0,\tau],Y),\ x\mapsto CT(\cdot)x$ extends boundedly to X for all $\tau>0$.

 $A: \ \operatorname{generator}$ of a C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}\ \&\ C$: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Proof (outline): Tweaking Wintermayr's proof, we can weaken the order properties to

X,Y: ordered Banach spaces¹ such that norm on Y is additive on Y_+ .

Finite rank $\Rightarrow \exists$ equivalent norm on $\operatorname{Rg} C$ additive on $(\operatorname{Rg} C)_+$.

 $^{^{1}}X_{\perp}$: generating and normal

C is called L^1 -admissible if $\Psi_{\tau}:D(A)\to L^1([0,\tau],Y),\ x\mapsto CT(\,\cdot\,)x$ extends boundedly to X for all $\tau>0$.

 $A: \ \operatorname{generator}$ of a C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X

 $C: D(A) \xrightarrow{\mathsf{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}\ \&\ C$: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t\geq 0} \& C$: positive, and C: finite rank.

Proof (outline): Tweaking Wintermayr's proof, we can weaken the order properties to

X,Y: ordered Banach spaces¹ such that norm on Y is additive on Y_+ .

Finite rank $\Rightarrow \exists$ equivalent norm on $\operatorname{Rg} C$ additive on $(\operatorname{Rg} C)_+$. So,

$$\left\|\Psi_{\tau}x\right\|_{L^{1}\left(\left[0,\tau\right],Y\right)}\leq\left\|\mathrm{id}\right\|_{\mathrm{Rg}\;C\to Y}\left\|\Psi_{\tau}\right\|_{X\to L^{1}\left(\left[0,\tau\right],\mathrm{Rg}\;C\right)}\left\|x\right\|_{X}\qquad\forall\;x\in D\left(A\right).$$

 $^{^{1}}X_{\perp}$: generating and normal

 $\begin{array}{l} C \text{ is called } L^1\text{-admissible if} \\ \Psi_\tau:D\left(A\right)\to L^1([0,\tau],Y),\ x\mapsto CT(\,\cdot\,)x \\ \text{extends boundedly to } X \text{ for all } \tau>0. \end{array}$

 $A: \ \operatorname{generator}$ of a C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X

 $C: D(A) \xrightarrow{\text{bounded}} Y$ (Banach space)

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}\ \&\ C$: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Proof (outline): Tweaking Wintermayr's proof, we can weaken the order properties to

X,Y: ordered Banach spaces¹ such that norm on Y is additive on Y_+ .

Finite rank $\Rightarrow \exists$ equivalent norm on $\operatorname{Rg} C$ additive on $(\operatorname{Rg} C)_+$. So,

$$\left\|\Psi_{\tau}x\right\|_{L^{1}\left(\left[0,\tau\right],Y\right)}\leq\left\|\mathrm{id}\right\|_{\mathrm{Rg}\,C\to Y}\left\|\Psi_{\tau}\right\|_{X\to L^{1}\left(\left[0,\tau\right],\mathrm{Rg}\,C\right)}\left\|x\right\|_{X}\qquad\forall\,x\in D\left(A\right).$$

Hence, C is L^1 -admissible.

 $^{^{1}}X_{\perp}$: generating and normal

C is called L^1 -admissible if $\Psi_{\tau}: D(A) \to L^1([0,\tau],Y), \ x \mapsto CT(\cdot)x$

extends boundedly to X for all $\tau > 0$.

 $A: \ {
m generator} \ {
m of} \ {
m a} \ {\cal C}_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ {
m on} \ {
m Banach} \ {
m space} \ X$

 $C: D(A) \xrightarrow{\text{bounded}} Y \text{ (Banach space)}$

Theorem (Wintermayr)

Sufficient: X: Banach lattice, Y: AL-space, and $(T(t))_{t\geq 0}$ & C: positive.

Proposition (A., Glück, Paunonen, Schwenninger)

Sufficient: X, Y: ordered Banach spaces¹, $(T(t))_{t>0} \& C$: positive, and C: finite rank.

Theorem (A., Glück, Paunonen, Schwenninger)

Sufficient: X,\widetilde{Y} : ordered Banach spaces 1 , norm additive on \widetilde{Y}_+ , $(T(t))_{t\geq 0}$: positive, and

$$C:D\left(A\right)\xrightarrow[\text{positive}]{C_{1}}\widetilde{Y}\xrightarrow[\text{bounded}]{C_{2}}Y.$$

 $^{^{1}}X_{\perp}$: generating and normal

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ \ \text{generator of positive} \ C_0\text{-semigroup} \ (T(t))_{t\geq 0} \ \text{on} \ X \ \text{and} \ B: U \xrightarrow{\text{positive}} X_{-1}.$

Wlog, $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \geq 0\} \subseteq \rho(A)$.

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ \, {
m generator \ of \ positive} \ \, C_0 \mbox{-semigroup} \ \, (T(t))_{t \geq 0} \ \, {
m on} \ \, X \ \, {
m and} \ \, B: U \xrightarrow{
m positive} X_{-1}.$

Wlog, $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \geq 0\} \subseteq \rho(A)$.

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U=X\ \mathrm{and}\ \mathrm{r}(A^{-1}B)<1$$
, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Let X: Banach lattice, U: AM-space, and suppose

 $A: \text{ generator of positive } C_0\text{-semigroup } (T(t))_{t\geq 0} \text{ on } X \text{ and } B: U \xrightarrow{\text{positive}} X_{-1}.$ Wlog, $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq 0\} \subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U = X$$
 and $r(A^{-1}B) < 1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If
$$C: X \xrightarrow{\operatorname{positive}} U$$
 and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right):=\{f\in X:(A_{-1}+BC)f\in X\},\qquad A_{BC}:=\left(A_{-1}+BC\right)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ ext{generator of positive } C_0 ext{-semigroup } (T(t))_{t\geq 0} \ ext{on } X \ ext{and } B: U \xrightarrow{ ext{positive}} X_{-1}.$ Wlog, $\{\lambda\in\mathbb{C}: \operatorname{Re}\lambda\geq 0\}\subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U = X$$
 and $r(A^{-1}B) < 1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If $C: X \xrightarrow{\operatorname{positive}} U$ and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right) := \{f \in X : (A_{-1} + BC)f \in X\}, \qquad A_{BC} := (A_{-1} + BC)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Application: Let A_m : differential operator with maximal domain on a Banach lattice X,

Let X: Banach lattice, U: AM-space, and suppose

 $A: \text{ generator of positive } C_0\text{-semigroup } (T(t))_{t\geq 0} \text{ on } X \text{ and } B: U \xrightarrow{\text{positive}} X_{-1}.$ Wlog, $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq 0\} \subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U = X$$
 and $r(A^{-1}B) < 1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If $C: X \xrightarrow{\operatorname{positive}} U$ and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right) := \{f \in X : (A_{-1} + BC)f \in X\}, \qquad A_{BC} := (A_{-1} + BC)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Application: Let A_m : differential operator with maximal domain on a Banach lattice X, $G:D\left(A_m\right) \xrightarrow{\mathsf{onto}} \partial X$ (AM-space with unit) such that

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ ext{generator of positive} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ ext{on} \ X \ ext{and} \ B: U \xrightarrow{ ext{positive}} X_{-1}.$ Wlog, $\{\lambda\in\mathbb{C}: \operatorname{Re}\lambda\geq 0\}\subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U = X$$
 and $r(A^{-1}B) < 1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If $C: X \xrightarrow{\operatorname{positive}} U$ and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right):=\{f\in X:(A_{-1}+BC)f\in X\},\qquad A_{BC}:=\left(A_{-1}+BC\right)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Application: Let A_m : differential operator with maximal domain on a Banach lattice X, $G:D(A_m) \xrightarrow[]{onto} \partial X$ (AM-space with unit) such that

$$\exists \lambda : \left(G_{|_{\ker(\lambda - A_m)}} \right)^{-1} \in \mathcal{L}(\partial X, X)_+,$$

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ ext{generator of positive} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ ext{on} \ X \ ext{and} \ B: U \xrightarrow{ ext{positive}} X_{-1}.$ Wlog, $\{\lambda\in\mathbb{C}: \operatorname{Re}\lambda\geq 0\}\subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U = X$$
 and $r(A^{-1}B) < 1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If $C: X \xrightarrow{\operatorname{positive}} U$ and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right):=\{f\in X:(A_{-1}+BC)f\in X\},\qquad A_{BC}:=\left(A_{-1}+BC\right)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Application: Let A_m : differential operator with maximal domain on a Banach lattice X, $G:D\left(A_m\right)\xrightarrow{\operatorname{onto}}\partial X$ (AM-space with unit) such that

$$\exists \ \lambda : \left(G_{\big|_{\ker(\lambda - A_m)}} \right)^{-1} \in \mathcal{L}(\partial X, X)_+, \text{ and } \Phi : X \xrightarrow{\text{positive}} \partial X.$$

Let X: Banach lattice, U: AM-space, and suppose

 $A: \ ext{generator of positive} \ C_0 ext{-semigroup} \ (T(t))_{t\geq 0} \ ext{on} \ X \ ext{and} \ B: U \xrightarrow{ ext{positive}} X_{-1}.$ Wlog, $\{\lambda\in\mathbb{C}: \operatorname{Re}\lambda\geq 0\}\subseteq \rho(A).$

Theorem (Batkai, Jacob, Voigt, & Wintermayr)

If
$$U=X$$
 and $\operatorname{r}(A^{-1}B)<1$, then

$$D(A_B) := \{ f \in X : (A_{-1} + B)f \in X \}, \qquad A_B := (A_{-1} + B)_{|_X}$$

generates a positive C_0 -semigroup on X.

Theorem (Barbieri & Engel)

If $C: X \xrightarrow{\operatorname{positive}} U$ and $\operatorname{r}(CA^{-1}B) < 1$, then

$$D\left(A_{BC}\right):=\{f\in X:(A_{-1}+BC)f\in X\},\qquad A_{BC}:=\left(A_{-1}+BC\right)_{\big|_{X}}$$

generates a positive C_0 -semigroup on X.

Application: Let A_m : differential operator with maximal domain on a Banach lattice X, $G:D(A_m) \xrightarrow{\text{onto}} \partial X$ (AM-space with unit) such that

$$\exists \ \lambda : \left(G_{\big|_{\ker(\lambda - A_m)}} \right)^{-1} \in \mathcal{L}(\partial X, X)_+, \text{ and } \Phi : X \xrightarrow{\text{positive}} \partial X. \text{ If } A_m\big|_{\ker G} \text{ generates a positive semigroup on } X, \text{ then so does } A_m\big|_{\ker(G - \Phi)}.$$

Selected references for infinite-dimensional positive systems

S. Arora, J. Glück, L. Paunonen, and F. L. Schwenninger. **Limit-case admissibility for positive infinite-dimensional systems.** *J. Differ. Equations*, 440(1), 2025.

S. Arora, J. Glück, and F. L. Schwenninger. **The lattice structure of negative Sobolev and extrapolation spaces.** *Isr. J. Math.* (to appear), 2025.

A. Barbieri and K.-J. Engel. Perturbations of positive semigroups factorized via AMand AL-spaces. J. Evol. Equ., 25(1), 2025.

A. Bátkai, B. Jacob, J. Voigt, and J. Wintermayr. **Perturbations of positive semigroups on AM-spaces.** Semigroup Forum, 96(2), 2018.

A. Boulouz, H. Bounit, and S. Hadd. **Feedback theory approach to positivity and stability of evolution equations.** *Syst. Control Lett.*, 161, 2022.

Y. E. Gantouh. **Boundary approximate controllability under positivity constraints of infinite-dimensional control systems.** *J. Optim. Theory Appl.*, 198(2), 2023.

Y. E. Gantouh. **Positivity of infinite-dimensional linear systems.** 2023. Preprint.

Y. E. Gantouh. Well-posedness and stability of a class of linear systems. *Positivity*, 28(2), 2024.

J. Wintermayr. **Positivity in perturbation theory and infinite-dimensional systems.** PhD thesis, Bergische Universität Wuppertal, 2019.

ISem29 **Eventual Positivity**

Lecturers

Sahiba Arora Jochen Glück Ionathan Mui

Lectures

Oct 2025 -Feb 2026

Projects

Feb 2026 -Jun 2026

Workshop

8th - 12th Jun 2026

♥ Wuppertal