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Reminder: What is L7

L is a Dedekind-complete unital f-algebra over R (in particular, it is a
partially ordered ring).

C(K) C L C Cs(K) for a Stonean space K.
R C L (the constant functions).
P C L is the set of idempotents ({0, 1}-valued functions in L, indicator

functions of clopen subsets of K).

Note: if K = {x}, we get L =R.
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[L-vector lattices

An LL-vector lattice is a partially ordered L-module and a lattice.

Goal: examine how the theory of vector lattices changes when R is
replaced with L.

Notable differences:
o L is not a field
e L is not totally ordered
@ L has non-trivial idempotents

@ convergence in LL is not topological
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A classical theorem

The Riesz-Kantorovich Formulas
If X and Y are R-vector lattices and Y is Dedekind-complete, then
0 Lop(X,Y) = Lreg(X, Y) is a Dedekind-complete R-vector lattice, and
e for S € Lop(X,Y), we have
(SVO0)(x) =sup{S(y): 0 <y < x}
for all x € X ™.
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A classical theorem

The Riesz-Kantorovich Formulas
If X and Y are R-vector lattices and Y is Dedekind-complete, then
0 Lop(X,Y) = Lreg(X, Y) is a Dedekind-complete R-vector lattice, and
e for S € Lop(X,Y), we have
(SVO)(x) = sup{S(y) : 0 < y < x}
for all x € XT.

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean (e.g.
Dedekind-complete), then every additive function T : X™ — Y extends
uniquely to a positive operator T:X—>Y given by

T(x)=T(xt)— T(x).
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Archimedean R-vector lattices

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
additive function T : X — Y extends uniquely to a positive operator
T:X— Ygivenby T(x)=T(x")— T(x7).

For an R-vector lattice Y, these are equivalent to Y being Archimedean:
1. Forall x,y € Y, if Nx <y, then x <0.
2. Forally € Y*, inf{ly:neN}=0.
3. Forally € Y*,if D CR and infg D =0, then infy(Dy) = 0.
(Similar for suprema.)
4. Forally € YT, if D C R has an infin R, then infy(Dy) = (infg D)y.
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Archimedean R-vector lattices

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
additive function T : XT — Y extends uniquely to a positive operator
T:X — Y givenby T(x) = T(x")— T(x™).

For an R-vector lattice Y, these are equivalent to Y being Archimedean:
1. Forall x,y € Y, if Nx <y, then x <0.
2. Forally € Y*, inf{ly:neN}=0.
3. Forally € Y*,if D CR and infg D =0, then infy(Dy) = 0.
(Similar for suprema.)
4. Forally € YT, if D C R has an infin R, then infy(Dy) = (infg D)y.

(5. Scalar multiplication R x Y — Y is order-continuous.)
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Extension Lemma (proof sketch)

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
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Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every

additive function T : XT — YT extends uniquely to a positive operator
T:X — Ygivenby T(x) = T(x") = T(x™).

@ Forally € YT, if DCR has an inf in R, then infy(Dy) = (infg D)y.

Since T : X — Y is additive, it preserves order and T(gx) = qT(x) for
all x € X* and all g € Q.
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Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every

additive function T : XT — YT extends uniquely to a positive operator
T:X — Ygivenby T(x) = T(x") = T(x™).

@ Forally € YT, if DCR has an inf in R, then infy(Dy) = (infg D)y.
Since T : X — Y is additive, it preserves order and T(gx) = qT(x) for
all x e XT and all g € QF. T(rx) = rT(x) for r e RT, x € X*7?

I(pn), (qn) € QI.\J- with p, T rand g, | r.
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@ Forally € YT, if DCR has an inf in R, then infy(Dy) = (infg D)y.
Since T : X — Y is additive, it preserves order and T(gx) = qT(x) for
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Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
additive function T : XT — YT extends uniquely to a positive operator
T:X — Ygivenby T(x) = T(x") = T(x™).

@ Forally € YT, if DCR has an inf in R, then infy(Dy) = (infg D)y.
Since T : X — Y is additive, it preserves order and T(gx) = qT(x) for
all x e XT and all g € QF. T(rx) = rT(x) for r e RT, x € X*7?

I(pn), (qn) € QI.\J- with p, T rand g, | r. Then

Pn < r < dn
PnX < rx < qnX
T(pax) < T(x) < T(gnx)
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Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every

additive function T : XT — YT extends uniquely to a positive operator
T:X — Ygivenby T(x) = T(x") = T(x™).

@ Forally € YT, if DCR has an inf in R, then infy(Dy) = (infg D)y.
Since T : X — Y is additive, it preserves order and T(gx) = qT(x) for
all x e XT and all g € QF. T(rx) = rT(x) for r e RT, x € X*7?

I(pn), (qn) € QI.\J- with p, T rand g, | r. Then

Pn < r < dn
PnX < rx < qnX
T(pax) < T(x) < T(gnx)
pnT(x) < T(rx) < qnT(x).
Y is Archimedean, so rT(x) < T(rx) < rT(x). Thus rT(x) = T(rx).
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What happens in LL-vector lattices?
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We can approximate real numbers by rational numbers.
We can approximate elements of IL by rational step functions.
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Rational step function: a = 27:1 gim; with g1,...,q, € Q and 71,...,7m,
(disjoint) idempotents.
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What happens in LL-vector lattices?

We can approximate real numbers by rational numbers.
We can approximate elements of IL by rational step functions.

Rational step function: a = 27:1 gim; with g1,...,q, € Q and 71,...,7m,
(disjoint) idempotents.

Freudenthal Spectral Theorem

Let A € L™. Then there exists a sequence «, of Q-step functions such
that a, T A
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What happens in LL-vector lattices?

If Y is an Archimedean LL-vector lattice, and A\, T A in IL, then we do not
necessarily have ),y T \y.
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Example

Let L = ¢ and Y = ¢*°/cgo (with quotient order). It is easy to show
that Y satisfies Ly | 0 forall y € Y+.
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necessarily have ),y T \y.

Example

Let L = ¢ and Y = ¢*°/cgo (with quotient order). It is easy to show
that Y satisfies 1y | 0 for all y € Y*. For each n € N, let

,—/A .
An=(0,...,0,1,1,1,...). Then A\, L 0in L.
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What happens in LL-vector lattices?

If Y is an Archimedean LL-vector lattice, and A\, T A in IL, then we do not
necessarily have ),y T \y.

Example |

Let L = ¢ and Y = ¢*°/cgo (with quotient order). It is easy to show
that Y satisfies 1y | 0 for all y € Y*. For each n € N, let

—— .
An=1(0,...,0,1,1,1,...). Then A\, L OinL. Lety =[(1,1,...)] € Y.
Then A,y =[(0,...,0,1,1,...)] =[(1,1,...)] = y for all n € N.
So A,y does not decrease to zero in Y.

Notice that A\, € P for all n € N...
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Say Y is P-Archimedean if

whenever D C P, inf, D=0, and y € YT, we have infy(Dy) = 0. |

Say Y is R-Archimedean if

whenever D C R, inf, D =0, and y € YT, we have infy(Dy) = 0. |

(Equivalently, 1y | 0 for all y € Y1)
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Say Y is P-Archimedean if

whenever D C P, inf, D =0, and y € YT, we have infy(Dy) = 0. |

Say Y is R-Archimedean if

whenever D C R, inf, D =0, and y € Y, we have infy(Dy) = 0. |

(Equivalently, 1y | 0 for all y € Y1)
If L =R, then P = {0,1} and every L-vector lattice is P-Archimedean!

Remarkably, the following are equivalent:
@ Y is R-Archimedean and P-Archimedean.
@ Whenever D C L, inf, D =0, and y € YT, we have infy(Dy) = 0.

@ Scalar multiplication L. x Y — Y is order-continuous.

Tomas Chamberlain (University of Pretoria) L-vector lattices 9/14



New extension lemma (proof sketch)

Extension lemma

If X and Y are LL-vector lattices and Y is R-Archimedean and
P-Archimedean, then every additive P-homogeneous function

T : X* — Y™ extends uniquely to a positive linear map T : X — Y given
by T(x)= T(xT)— T(x™).
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New extension lemma (proof sketch)

Extension lemma

If X and Y are LL-vector lattices and Y is R-Archimedean and
P-Archimedean, then every additive P-homogeneous function

T : X+t — YT extends uniquely to a positive linear map T : X — Y given
by T(x) = T(x") — T(x).

Same as in the classical case:
e T is order-preserving
e T is QT-homogeneous
Combining with P-homegeneity, we get T(ax) = aT(x) for all x € X+

and all Q*-step functions o = > ; gi;.
Now T(Ax) = AT(x) for all A e L*?
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?
Recall C(K) CL C Cx(K). First let A € C(K)™.
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For x € X* and A € L™, do we have T(A\x) = AT(x)?

Recall C(K) C L C Cy(K). First let A € C(K)T.

Freudenthal Spectral Theorem: 3 Q*-step functions «, such that
an T A

Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.
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Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?

Recall C(K) C L C Cy(K). First let A € C(K)T.

Freudenthal Spectral Theorem: 3 Q*-step functions «, such that

an T A

Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?

Recall C(K) C L C Cy(K). First let A € C(K)T.

Freudenthal Spectral Theorem: 3 Q*-step functions «, such that

an T A

Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.

Qp
apX

T (apx)
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?

Recall C(K) CL C Cx(K). First let A € C(K)™.

Freudenthal Spectral Theorem: 3 Q*-step functions «, such that
an T A

Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.

Qp < A < ﬁn
QX < AX < Bnx
T(apx) < T(Ax) < T(Bnx)
anT(x) < T(Ax) < BaT(x)
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?
Recall C(K) CL C Cx(K). First let A € C(K)™.
Freudenthal Spectral Theorem: 3 Q*-step functions «, such that

an T A
Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.
Op S )\ S ﬁn
QpX < AX < Bnx
T(apx) < T(Ax) < T(Bnx)
anT(x) < T(Ax) < BaT(x)

Y is R-Archimedean and P-Archimedean, so

AT(x) < T(Ax) < AT(x).
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New extension lemma (proof sketch)

For x € X* and A € L™, do we have T(A\x) = AT(x)?
Recall C(K) CL C Cx(K). First let A € C(K)™.
Freudenthal Spectral Theorem: 3 Q*-step functions «, such that

an T A
Because )\ € C(K), 3 Q*-step functions 3, such that 3, | \.
Op S )\ S ﬁn
QpX < AX < Bnx
T(apx) < T(Ax) < T(Bnx)
anT(x) < T(Ax) < BaT(x)

Y is R-Archimedean and P-Archimedean, so
AT(x) < T(Ax) < AT(x).

So T is C(K)*-homogeneous.
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New extension lemma (proof sketch)

Now let A € LT.
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Now let A € LT.

3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For
(1 MKk)<n
example, set m,(k) = { 0 A(K) > n for all k € K. Then m,A T A, and
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New extension lemma (proof sketch)

Now let A € LT.

3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For
(1 MKk)<n
example, set m,(k) = { 0 A(K) > n for all k € K. Then m,A T A, and
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New extension lemma (proof sketch)

Now let A € L*.
3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For

1 XKk)<n
example, set m,(k) = { 0 Ak)>n

T T(Ax) 1T T(Mx)

|
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Tomas Chamberlain (University of Pretoria) L-vector lattices 12/14



New extension lemma (proof sketch)
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3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For
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example, set m,(k) = { 0 Ak)>n
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New extension lemma (proof sketch)

Now let A € LT.

3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For
(1 MKk)<n

example, set m,(k) = { 0 A(K) > n for all k € K. Then m,A T A, and
T T(Ax) 1T T(Mx)

|

T(mpAx) = 7w AT(x) T AT(x)

2o T(Ax) = AT (x).

The rest of the proof is easy.
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New extension lemma (proof sketch)

Now let A € L*.
3 sequence (m,) in P such that 7, T 1 and m,A € C(K) for all n € N. For

1 Mk)<n
0 AK) >n forall k € K. Then mpA T A, and

T T(Ax) 1T T(Mx)
|
T(mpAx) = 7w AT(x) T AT(x)
2o T(Ax) = AT (x).
The rest of the proof is easy.

example, set m,(k) = {

Extension lemma

If X and Y are LL-vector lattices and Y is R-Archimedean and
P-Archimedean, then every additive P-homogeneous function

T : XT — YT extends uniquely to a positive operator T : X — Y.
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New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas

If X and Y are LL-vector lattices and Y is Dedekind-complete and
P-Archimedean, then

® Lop(X,Y) = Lreg(X, Y) is a Dedekind-complete L-vector lattice, and
e for S € Lyp(X,Y), we have

(SVO0)(x) =sup{S(y) : 0 <y < x}
for all x € XT.

(Dedekind-complete = R-Archimedean)
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The map T : XT — YT given by x — sup{S(y) : 0 < y < x} is additive
as in the classical case. We just need to show that it is P-homogeneous.
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New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas
If X and Y are LL-vector lattices and Y is Dedekind-complete and
P-Archimedean, then
® Lop(X,Y) = Lreg(X, Y) is a Dedekind-complete L-vector lattice, and
e for S € Lyp(X,Y), we have

(SVO0)(x) =sup{S(y) : 0 <y < x}
for all x € XT.

(Dedekind-complete = R-Archimedean)
The map T : XT — YT given by x — sup{S(y) : 0 < y < x} is additive
as in the classical case. We just need to show that it is P-homogeneous.
For m € P, we have T(mx) =sup{S(y):0 <y < mx}

=sup{S(7mz): 0 <z < x}

=sup{nS(z): 0 <z < x}

=T (x).
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Aside...

For y € Y, recall:
my=inf{r e Py =y},

When is Y support-attaining, i.e., when do we have 7,y = y?
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For Y an LL-vector lattice, the following are equivalent:
@ Y is P-Archimedean.

@ Y is support-attaining.
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For y € Y, recall:
my=inf{r e Py =y},

When is Y support-attaining, i.e., when do we have 7,y = y?

For Y an LL-vector lattice, the following are equivalent:
@ Y is P-Archimedean.
@ Y is support-attaining.
@ Every cyclic submodule of Y is projective (Ly = m,LL).
°

Y is a non-singular L-module.
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Aside...

For y € Y, recall:
my=inf{r e Py =y},

When is Y support-attaining, i.e., when do we have 7,y = y?

For Y an LL-vector lattice, the following are equivalent:

Y is P-Archimedean.

Y is support-attaining.

Every cyclic submodule of Y is projective (Ly = 7, LL).
Y is a non-singular L-module.

Examples of support-attaining L-modules:
@ LL-normed spaces
@ Projective L-modules (e.g. free L-modules)
@ Any LL-module with an essential submodule that is support-attaining

o (Infinite) sums, (infinite) products, and submodules of
support-attaining L.-modules
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