L-vector lattices

Tomas Chamberlain

University of Pretoria

Reminder: What is \mathbb{L} ?

 $\mathbb L$ is a Dedekind-complete unital f-algebra over $\mathbb R$ (in particular, it is a partially ordered ring).

 $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$ for a Stonean space K.

 $\mathbb{R} \subseteq \mathbb{L}$ (the constant functions).

 $\mathbb{P} \subseteq \mathbb{L}$ is the set of **idempotents** ($\{0,1\}$ -valued functions in \mathbb{L} , indicator functions of clopen subsets of K).

Note: if $K = \{*\}$, we get $\mathbb{L} = \mathbb{R}$.

L-vector lattices

An \mathbb{L} -vector lattice is a **partially ordered** \mathbb{L} -module and a lattice.

Goal: examine how the theory of vector lattices changes when $\mathbb R$ is replaced with $\mathbb L.$

Notable differences:

- ■ L is not a field
- ullet L is not totally ordered
- L has non-trivial idempotents
- ullet convergence in ${\mathbb L}$ is not topological

A classical theorem

The Riesz-Kantorovich Formulas

If X and Y are \mathbb{R} -vector lattices and Y is Dedekind-complete, then

- ullet $\mathcal{L}_{\sf ob}(X,Y)=\mathcal{L}_{\sf reg}(X,Y)$ is a Dedekind-complete \mathbb{R} -vector lattice, and
- for $S \in \mathcal{L}_{ob}(X, Y)$, we have $(S \vee 0)(x) = \sup\{S(y) : 0 \le y \le x\}$ for all $x \in X^+$.

A classical theorem

The Riesz-Kantorovich Formulas

If X and Y are \mathbb{R} -vector lattices and Y is Dedekind-complete, then

- $\mathcal{L}_{\mathsf{ob}}(X,Y) = \mathcal{L}_{\mathsf{reg}}(X,Y)$ is a Dedekind-complete \mathbb{R} -vector lattice, and
- for $S \in \mathcal{L}_{ob}(X, Y)$, we have $(S \vee 0)(x) = \sup\{S(y) : 0 \le y \le x\}$ for all $x \in X^+$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is Archimedean (e.g. Dedekind-complete), then every additive function $T:X^+\to Y^+$ extends uniquely to a positive operator $\widehat{T}:X\to Y$ given by $\widehat{T}(x)=T(x^+)-T(x^-)$.

Archimedean R-vector lattices

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

For an \mathbb{R} -vector lattice Y, these are equivalent to Y being Archimedean:

- 1. For all $x, y \in Y$, if $\mathbb{N}x \leq y$, then $x \leq 0$.
- 2. For all $y \in Y^+$, inf $\left\{\frac{1}{n}y : n \in \mathbb{N}\right\} = 0$.
- 3. For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ and $\inf_{\mathbb{R}} D = 0$, then $\inf_{Y} (Dy) = 0$. (Similar for suprema.)
- 4. For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ has an inf in \mathbb{R} , then $\inf_Y (Dy) = (\inf_{\mathbb{R}} D)y$.

Archimedean R-vector lattices

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

For an \mathbb{R} -vector lattice Y, these are equivalent to Y being Archimedean:

- 1. For all $x, y \in Y$, if $\mathbb{N}x \leq y$, then $x \leq 0$.
- 2. For all $y \in Y^+$, inf $\left\{\frac{1}{n}y : n \in \mathbb{N}\right\} = 0$.
- 3. For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ and $\inf_{\mathbb{R}} D = 0$, then $\inf_{Y} (Dy) = 0$. (Similar for suprema.)
- 4. For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ has an inf in \mathbb{R} , then $\inf_Y (Dy) = (\inf_{\mathbb{R}} D)y$.
- (5. Scalar multiplication $\mathbb{R} \times Y \to Y$ is order-continuous.)

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

• For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ has an inf in \mathbb{R} , then $\inf_Y (Dy) = (\inf_{\mathbb{R}} D)y$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

• For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ has an inf in \mathbb{R} , then $\inf_Y (Dy) = (\inf_{\mathbb{R}} D)y$. Since $T: X^+ \to Y^+$ is additive, it preserves order and T(qx) = qT(x) for all $x \in X^+$ and all $q \in \mathbb{Q}^+$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

$$p_n \leq r \leq q_n$$

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

$$p_n \leq r \leq q_n$$
 $p_n \times \leq r \times \leq q_n \times$

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

$$p_n \leq r \leq q_n$$

 $p_n x \leq r x \leq q_n x$
 $T(p_n x) \leq T(r x) \leq T(q_n x)$

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

$$p_n \leq r \leq q_n$$
 $p_n x \leq r x \leq q_n x$
 $T(p_n x) \leq T(r x) \leq T(q_n x)$
 $p_n T(x) \leq T(r x) \leq q_n T(x)$.

Extension Lemma

If X and Y are \mathbb{R} -vector lattices and Y is **Archimedean**, then every additive function $T: X^+ \to Y^+$ extends uniquely to a positive operator $\widehat{T}: X \to Y$ given by $\widehat{T}(x) = T(x^+) - T(x^-)$.

• For all $y \in Y^+$, if $D \subseteq \mathbb{R}$ has an inf in \mathbb{R} , then $\inf_Y (Dy) = (\inf_{\mathbb{R}} D)y$. Since $T: X^+ \to Y^+$ is additive, it preserves order and T(qx) = qT(x) for all $x \in X^+$ and all $q \in \mathbb{Q}^+$. T(rx) = rT(x) for $r \in \mathbb{R}^+$, $x \in X^+$? $\exists (p_n), (q_n) \in \mathbb{Q}_+^{\mathbb{N}}$ with $p_n \uparrow r$ and $q_n \downarrow r$. Then

$$p_n \leq r \leq q_n$$

 $p_n x \leq r x \leq q_n x$
 $T(p_n x) \leq T(r x) \leq T(q_n x)$
 $p_n T(x) \leq T(r x) \leq q_n T(x)$.

Y is Archimedean, so $rT(x) \leq T(rx) \leq rT(x)$. Thus rT(x) = T(rx).

We can approximate real numbers by rational numbers. We can approximate elements of $\mathbb L$ by rational step functions.

We can approximate real numbers by rational numbers.

We can approximate elements of \mathbb{L} by **rational step functions**.

Rational step function: $\alpha = \sum_{i=1}^n q_i \pi_i$ with $q_1, \ldots, q_n \in \mathbb{Q}$ and π_1, \ldots, π_n (disjoint) idempotents.

We can approximate real numbers by rational numbers.

We can approximate elements of \mathbb{L} by **rational step functions**.

Rational step function: $\alpha = \sum_{i=1}^n q_i \pi_i$ with $q_1, \ldots, q_n \in \mathbb{Q}$ and π_1, \ldots, π_n (disjoint) idempotents.

Freudenthal Spectral Theorem

Let $\lambda \in \mathbb{L}^+$. Then there exists a sequence α_n of \mathbb{Q} -step functions such that $\alpha_n \uparrow \lambda$.

If Y is an Archimedean \mathbb{L} -vector lattice, and $\lambda_n \uparrow \lambda$ in \mathbb{L} , then **we do not necessarily have** $\lambda_n y \uparrow \lambda y$.

If Y is an Archimedean \mathbb{L} -vector lattice, and $\lambda_n \uparrow \lambda$ in \mathbb{L} , then **we do not necessarily have** $\lambda_n y \uparrow \lambda y$.

Example

Let $\mathbb{L} = \ell^{\infty}$ and $Y = \ell^{\infty}/c_{00}$ (with quotient order). It is easy to show that Y satisfies $\frac{1}{n}y \downarrow 0$ for all $y \in Y^+$.

If Y is an Archimedean \mathbb{L} -vector lattice, and $\lambda_n \uparrow \lambda$ in \mathbb{L} , then **we do not necessarily have** $\lambda_n y \uparrow \lambda y$.

Example

Let $\mathbb{L}=\ell^\infty$ and $Y=\ell^\infty/c_{00}$ (with quotient order). It is easy to show that Y satisfies $\frac{1}{n}y\downarrow 0$ for all $y\in Y^+$. For each $n\in\mathbb{N}$, let

$$\lambda_n = (\overbrace{0, \dots, 0}, 1, 1, 1, \dots)$$
. Then $\lambda_n \downarrow 0$ in \mathbb{L} .

If Y is an Archimedean \mathbb{L} -vector lattice, and $\lambda_n \uparrow \lambda$ in \mathbb{L} , then **we do not necessarily have** $\lambda_n y \uparrow \lambda y$.

Example

Let $\mathbb{L}=\ell^{\infty}$ and $Y=\ell^{\infty}/c_{00}$ (with quotient order). It is easy to show that Y satisfies $\frac{1}{n}y\downarrow 0$ for all $y\in Y^+$. For each $n\in\mathbb{N}$, let

$$\lambda_n = (\overbrace{0,\ldots,0},1,1,1,\ldots)$$
. Then $\lambda_n \downarrow 0$ in \mathbb{L} . Let $y = [(1,1,\ldots)] \in Y$. Then $\lambda_n y = [(0,\ldots,0,1,1,\ldots)] = [(1,1,\ldots)] = y$ for all $n \in \mathbb{N}$. So $\lambda_n y$ does not decrease to zero in Y .

Notice that $\lambda_n \in \mathbb{P}$ for all $n \in \mathbb{N}$...

Say Y is \mathbb{P} -Archimedean if

whenever $D \subseteq \mathbb{P}$, $\inf_{\mathbb{L}} D = 0$, and $y \in Y^+$, we have $\inf_{Y} (Dy) = 0$.

Say Y is \mathbb{R} -Archimedean if

whenever
$$D \subseteq \mathbb{R}$$
, $\inf_{\mathbb{L}} D = 0$, and $y \in Y^+$, we have $\inf_{Y} (Dy) = 0$.

(Equivalently, $\frac{1}{n}y \downarrow 0$ for all $y \in Y^+$.)

Say Y is \mathbb{P} -Archimedean if

whenever $D \subseteq \mathbb{P}$, $\inf_{\mathbb{L}} D = 0$, and $y \in Y^+$, we have $\inf_{Y} (Dy) = 0$.

Say Y is \mathbb{R} -Archimedean if

whenever $D \subseteq \mathbb{R}$, $\inf_{\mathbb{L}} D = 0$, and $y \in Y^+$, we have $\inf_{Y} (Dy) = 0$.

(Equivalently, $\frac{1}{n}y \downarrow 0$ for all $y \in Y^+$.)

If $\mathbb{L}=\mathbb{R}$, then $\mathbb{P}=\{0,1\}$ and every \mathbb{L} -vector lattice is \mathbb{P} -Archimedean!

Remarkably, the following are equivalent:

- Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean.
- Whenever $D \subseteq \mathbb{L}$, $\inf_{\mathbb{L}} D = 0$, and $y \in Y^+$, we have $\inf_{Y} (Dy) = 0$.
- Scalar multiplication $\mathbb{L} \times Y \to Y$ is order-continuous.

Extension lemma

If X and Y are \mathbb{L} -vector lattices and Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean, then every additive \mathbb{P} -homogeneous function $T:X^+\to Y^+$ extends uniquely to a positive linear map $\widehat{T}:X\to Y$ given by $\widehat{T}(x)=T(x^+)-T(x^-)$.

Extension lemma

If X and Y are \mathbb{L} -vector lattices and Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean, then every additive \mathbb{P} -homogeneous function $T:X^+\to Y^+$ extends uniquely to a positive linear map $\widehat{T}:X\to Y$ given by $\widehat{T}(x)=T(x^+)-T(x^-)$.

Same as in the classical case:

- T is order-preserving
- T is \mathbb{Q}^+ -homogeneous

Combining with \mathbb{P} -homegeneity, we get $T(\alpha x) = \alpha T(x)$ for all $x \in X^+$ and all \mathbb{Q}^+ -step functions $\alpha = \sum_{i=1}^n q_i \pi_i$.

Now
$$T(\lambda x) = \lambda T(x)$$
 for all $\lambda \in \mathbb{L}^+$?

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$? Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

$$\alpha_n \leq \lambda \leq \beta_n$$

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

$$\alpha_{n} \leq \lambda \leq \beta_{n}$$
 $\alpha_{n}x \leq \lambda x \leq \beta_{n}x$

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

$$\begin{array}{ccccc} \alpha_{n} & \leq & \lambda & \leq & \beta_{n} \\ \alpha_{n}x & \leq & \lambda x & \leq & \beta_{n}x \\ T(\alpha_{n}x) & \leq & T(\lambda x) & \leq & T(\beta_{n}x) \end{array}$$

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

$$\begin{array}{ccccc} \alpha_n & \leq & \lambda & \leq & \beta_n \\ \alpha_n x & \leq & \lambda x & \leq & \beta_n x \\ T(\alpha_n x) & \leq & T(\lambda x) & \leq & T(\beta_n x) \\ \alpha_n T(x) & \leq & T(\lambda x) & \leq & \beta_n T(x) \end{array}$$

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

Because $\lambda \in C(K)$, $\exists \mathbb{Q}^+$ -step functions β_n such that $\beta_n \downarrow \lambda$.

$$\begin{array}{ccccc} \alpha_n & \leq & \lambda & \leq & \beta_n \\ \alpha_n x & \leq & \lambda x & \leq & \beta_n x \\ T(\alpha_n x) & \leq & T(\lambda x) & \leq & T(\beta_n x) \\ \alpha_n T(x) & \leq & T(\lambda x) & \leq & \beta_n T(x) \end{array}$$

Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean, so

$$\lambda T(x) \leq T(\lambda x) \leq \lambda T(x).$$

For $x \in X^+$ and $\lambda \in \mathbb{L}^+$, do we have $T(\lambda x) = \lambda T(x)$?

Recall $C(K) \subseteq \mathbb{L} \subseteq C_{\infty}(K)$. First let $\lambda \in C(K)^+$.

Freudenthal Spectral Theorem: $\exists \mathbb{Q}^+$ -step functions α_n such that $\alpha_n \uparrow \lambda$.

Because $\lambda \in C(K)$, $\exists \mathbb{Q}^+$ -step functions β_n such that $\beta_n \downarrow \lambda$.

$$\begin{array}{ccccc} \alpha_n & \leq & \lambda & \leq & \beta_n \\ \alpha_n x & \leq & \lambda x & \leq & \beta_n x \\ T(\alpha_n x) & \leq & T(\lambda x) & \leq & T(\beta_n x) \\ \alpha_n T(x) & \leq & T(\lambda x) & \leq & \beta_n T(x) \end{array}$$

Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean, so

$$\lambda T(x) \leq T(\lambda x) \leq \lambda T(x).$$

So T is $C(K)^+$ -homogeneous.

Now let $\lambda \in \mathbb{L}^+$.

Now let $\lambda \in \mathbb{L}^+$.

 \exists sequence (π_n) in $\mathbb P$ such that $\pi_n \uparrow 1$ and $\pi_n \lambda \in C(K)$ for all $n \in \mathbb N$. For example, set $\pi_n(k) = \left\{ egin{array}{ll} 1 & \lambda(k) \leq n \\ 0 & \lambda(k) > n \end{array} \right.$ for all $k \in K$. Then $\pi_n \lambda \uparrow \lambda$, and

Now let $\lambda \in \mathbb{L}^+$.

 \exists sequence (π_n) in $\mathbb P$ such that $\pi_n \uparrow 1$ and $\pi_n \lambda \in C(K)$ for all $n \in \mathbb N$. For example, set $\pi_n(k) = \left\{ \begin{array}{ll} 1 & \lambda(k) \leq n \\ 0 & \lambda(k) > n \end{array} \right.$ for all $k \in K$. Then $\pi_n \lambda \uparrow \lambda$, and $\pi_n T(\lambda x) \quad \uparrow \quad T(\lambda x)$

Now let $\lambda \in \mathbb{L}^+$. \exists sequence (π_n) in \mathbb{P} such that $\pi_n \uparrow 1$ and $\pi_n \lambda \in C(K)$ for all $n \in \mathbb{N}$. For example, set $\pi_n(k) = \left\{ \begin{array}{cc} 1 & \lambda(k) \leq n \\ 0 & \lambda(k) > n \end{array} \right.$ for all $k \in K$. Then $\pi_n \lambda \uparrow \lambda$, and $\pi_n T(\lambda x) \quad \uparrow \quad T(\lambda x)$ $\qquad \qquad || \qquad \qquad T(\pi_n \lambda x)$

Now let $\lambda \in \mathbb{L}^+$. \exists sequence (π_n) in \mathbb{P} such that $\pi_n \uparrow 1$ and $\pi_n \lambda \in C(K)$ for all $n \in \mathbb{N}$. For example, set $\pi_n(k) = \begin{cases} 1 & \lambda(k) \leq n \\ 0 & \lambda(k) > n \end{cases}$ for all $k \in K$. Then $\pi_n \lambda \uparrow \lambda$, and

$$\pi_n T(\lambda x) \uparrow T(\lambda x)$$
 $||$
 $T(\pi_n \lambda x) = \pi_n \lambda T(x)$

Now let $\lambda \in \mathbb{L}^+$. \exists sequence (π_n) in \mathbb{P} such that $\pi_n \uparrow 1$ and $\pi_n \lambda \in C(K)$ for all $n \in \mathbb{N}$. For example, set $\pi_n(k) = \left\{ \begin{array}{ll} 1 & \lambda(k) \leq n \\ 0 & \lambda(k) > n \end{array} \right.$ for all $k \in K$. Then $\pi_n \lambda \uparrow \lambda$, and $\pi_n T(\lambda x) \quad \uparrow \quad T(\lambda x)$ $\qquad \qquad || \qquad \qquad T(\pi_n \lambda x) \quad = \quad \pi_n \lambda T(x) \quad \uparrow \quad \lambda T(x)$

Now let $\lambda \in \mathbb{L}^+$.

$$T(\lambda x) = \lambda T(x).$$

The rest of the proof is easy.

Now let $\lambda \in \mathbb{L}^+$.

$$T(\lambda x) = \lambda T(x).$$

The rest of the proof is easy.

Extension lemma

If X and Y are \mathbb{L} -vector lattices and Y is \mathbb{R} -Archimedean and \mathbb{P} -Archimedean, then every additive \mathbb{P} -homogeneous function $T:X^+\to Y^+$ extends uniquely to a positive operator $\widehat{T}:X\to Y$.

4 T > 4 A > 4 B > 4 B > B > 9 Q C

New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas

If X and Y are \mathbb{L} -vector lattices and Y is Dedekind-complete **and** \mathbb{P} -**Archimedean**, then

- ullet $\mathcal{L}_{\mathsf{ob}}(X,Y) = \mathcal{L}_{\mathsf{reg}}(X,Y)$ is a Dedekind-complete \mathbb{L} -vector lattice, and
- for $S \in \mathcal{L}_{ob}(X, Y)$, we have $(S \vee 0)(x) = \sup\{S(y) : 0 \le y \le x\}$ for all $x \in X^+$.

 $(\mathsf{Dedekind\text{-}complete} \implies \mathbb{R}\text{-}\mathsf{Archimedean})$

New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas

If X and Y are \mathbb{L} -vector lattices and Y is Dedekind-complete **and** \mathbb{P} -**Archimedean**, then

- ullet $\mathcal{L}_{\mathsf{ob}}(X,Y) = \mathcal{L}_{\mathsf{reg}}(X,Y)$ is a Dedekind-complete \mathbb{L} -vector lattice, and
- for $S \in \mathcal{L}_{ob}(X, Y)$, we have $(S \vee 0)(x) = \sup\{S(y) : 0 \le y \le x\}$ for all $x \in X^+$.

(Dedekind-complete $\implies \mathbb{R}$ -Archimedean)

The map $T: X^+ \to Y^+$ given by $x \mapsto \sup\{S(y): 0 \le y \le x\}$ is additive as in the classical case. We just need to show that it is \mathbb{P} -homogeneous.

New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas

If X and Y are \mathbb{L} -vector lattices and Y is Dedekind-complete and \mathbb{P} -Archimedean, then

- ullet $\mathcal{L}_{\mathsf{ob}}(X,Y) = \mathcal{L}_{\mathsf{reg}}(X,Y)$ is a Dedekind-complete \mathbb{L} -vector lattice, and
- for $S \in \mathcal{L}_{ob}(X, Y)$, we have $(S \vee 0)(x) = \sup\{S(y) : 0 \le y \le x\}$ for all $x \in X^+$.

(Dedekind-complete \implies \mathbb{R} -Archimedean)

The map $T: X^+ \to Y^+$ given by $x \mapsto \sup\{S(y): 0 \le y \le x\}$ is additive as in the classical case. We just need to show that it is \mathbb{P} -homogeneous.

For
$$\pi \in \mathbb{P}$$
, we have $T(\pi x) = \sup\{S(y) : 0 \le y \le \pi x\}$
= $\sup\{S(\pi z) : 0 \le z \le x\}$
= $\sup\{\pi S(z) : 0 \le z \le x\}$
= $\pi T(x)$.

For $y \in Y$, recall:

$$\pi_y := \inf\{\pi \in \mathbb{P} : \pi y = y\}.$$

When is Y **support-attaining**, i.e., when do we have $\pi_y y = y$?

For $y \in Y$, recall:

$$\pi_y := \inf\{\pi \in \mathbb{P} : \pi y = y\}.$$

When is Y **support-attaining**, i.e., when do we have $\pi_y y = y$?

For Y an \mathbb{L} -vector lattice, the following are equivalent:

- Y is \mathbb{P} -Archimedean.
- Y is support-attaining.

For $y \in Y$, recall:

$$\pi_y := \inf\{\pi \in \mathbb{P} : \pi y = y\}.$$

When is Y **support-attaining**, i.e., when do we have $\pi_y y = y$?

For Y an \mathbb{L} -vector lattice, the following are equivalent:

- Y is \mathbb{P} -Archimedean.
- Y is support-attaining.
- Every cyclic submodule of Y is projective ($\mathbb{L}y \cong \pi_y \mathbb{L}$).
- Y is a non-singular \mathbb{L} -module.

For $y \in Y$, recall:

$$\pi_y := \inf\{\pi \in \mathbb{P} : \pi y = y\}.$$

When is Y **support-attaining**, i.e., when do we have $\pi_y y = y$?

For Y an \mathbb{L} -vector lattice, the following are equivalent:

- Y is \mathbb{P} -Archimedean.
- Y is support-attaining.
- Every cyclic submodule of Y is projective ($\mathbb{L}y \cong \pi_y \mathbb{L}$).
- Y is a non-singular \mathbb{L} -module.

Examples of support-attaining \mathbb{L} -modules:

- L-normed spaces
- Projective L-modules (e.g. free L-modules)
- ullet Any \mathbb{L} -module with an essential submodule that is support-attaining
- (Infinite) sums, (infinite) products, and submodules of support-attaining L-modules