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Reminder: What is L?

L is a Dedekind-complete unital f -algebra over R (in particular, it is a
partially ordered ring).
C (K ) ⊆ L ⊆ C∞(K ) for a Stonean space K .

R ⊆ L (the constant functions).
P ⊆ L is the set of idempotents ({0, 1}-valued functions in L, indicator
functions of clopen subsets of K ).

Note: if K = {∗}, we get L = R.
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L-vector lattices

An L-vector lattice is a partially ordered L-module and a lattice.

Goal: examine how the theory of vector lattices changes when R is
replaced with L.

Notable differences:

L is not a field

L is not totally ordered

L has non-trivial idempotents

convergence in L is not topological
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A classical theorem

The Riesz-Kantorovich Formulas

If X and Y are R-vector lattices and Y is Dedekind-complete, then

Lob(X ,Y ) = Lreg(X ,Y ) is a Dedekind-complete R-vector lattice, and
for S ∈ Lob(X ,Y ), we have

(S ∨ 0)(x) = sup{S(y) : 0 ≤ y ≤ x}
for all x ∈ X+.

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean (e.g.
Dedekind-complete), then every additive function T : X+ → Y+ extends
uniquely to a positive operator T̂ : X → Y given by
T̂ (x) = T (x+)− T (x−).
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Archimedean R-vector lattices

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
additive function T : X+ → Y+ extends uniquely to a positive operator
T̂ : X → Y given by T̂ (x) = T (x+)− T (x−).

For an R-vector lattice Y , these are equivalent to Y being Archimedean:

1. For all x , y ∈ Y , if Nx ≤ y , then x ≤ 0.

2. For all y ∈ Y+, inf
{
1
ny : n ∈ N

}
= 0.

3. For all y ∈ Y+, if D ⊆ R and infRD = 0, then infY (Dy) = 0.
(Similar for suprema.)

4. For all y ∈ Y+, if D ⊆ R has an inf in R, then infY (Dy) = (infRD)y .

(5. Scalar multiplication R× Y → Y is order-continuous.)
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Extension Lemma (proof sketch)

Extension Lemma

If X and Y are R-vector lattices and Y is Archimedean, then every
additive function T : X+ → Y+ extends uniquely to a positive operator
T̂ : X → Y given by T̂ (x) = T (x+)− T (x−).

For all y ∈ Y+, if D ⊆ R has an inf in R, then infY (Dy) = (infRD)y .

Since T : X+ → Y+ is additive, it preserves order and T (qx) = qT (x) for
all x ∈ X+ and all q ∈ Q+. T (rx) = rT (x) for r ∈ R+, x ∈ X+?
∃(pn), (qn) ∈ QN

+ with pn ↑ r and qn ↓ r . Then

pn ≤ r ≤ qn
pnx ≤ rx ≤ qnx

T (pnx) ≤ T (rx) ≤ T (qnx)
pnT (x) ≤ T (rx) ≤ qnT (x).

Y is Archimedean, so rT (x) ≤ T (rx) ≤ rT (x). Thus rT (x) = T (rx).
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What happens in L-vector lattices?

We can approximate real numbers by rational numbers.
We can approximate elements of L by rational step functions.
Rational step function: α =

∑n
i=1 qiπi with q1, . . . , qn ∈ Q and π1, . . . , πn

(disjoint) idempotents.

Freudenthal Spectral Theorem

Let λ ∈ L+. Then there exists a sequence αn of Q-step functions such
that αn ↑ λ.
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What happens in L-vector lattices?

If Y is an Archimedean L-vector lattice, and λn ↑ λ in L, then we do not
necessarily have λny ↑ λy .

Example

Let L = ℓ∞ and Y = ℓ∞/c00 (with quotient order). It is easy to show
that Y satisfies 1

ny ↓ 0 for all y ∈ Y+. For each n ∈ N, let

λn = (

n︷ ︸︸ ︷
0, . . . , 0, 1, 1, 1, . . .). Then λn ↓ 0 in L. Let y = [(1, 1, . . .)] ∈ Y .

Then λny = [(0, . . . , 0, 1, 1, . . .)] = [(1, 1, . . .)] = y for all n ∈ N.
So λny does not decrease to zero in Y .

Notice that λn ∈ P for all n ∈ N...
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Say Y is P-Archimedean if

whenever D ⊆ P, infLD = 0, and y ∈ Y+, we have infY (Dy) = 0.

Say Y is R-Archimedean if

whenever D ⊆ R, infLD = 0, and y ∈ Y+, we have infY (Dy) = 0.

(Equivalently, 1
ny ↓ 0 for all y ∈ Y+.)

If L = R, then P = {0, 1} and every L-vector lattice is P-Archimedean!

Remarkably, the following are equivalent:

Y is R-Archimedean and P-Archimedean.

Whenever D ⊆ L, infLD = 0, and y ∈ Y+, we have infY (Dy) = 0.

Scalar multiplication L× Y → Y is order-continuous.
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New extension lemma (proof sketch)

Extension lemma

If X and Y are L-vector lattices and Y is R-Archimedean and
P-Archimedean, then every additive P-homogeneous function
T : X+ → Y+ extends uniquely to a positive linear map T̂ : X → Y given
by T̂ (x) = T (x+)− T (x−).

Same as in the classical case:

T is order-preserving

T is Q+-homogeneous

Combining with P-homegeneity, we get T (αx) = αT (x) for all x ∈ X+

and all Q+-step functions α =
∑n

i=1 qiπi .
Now T (λx) = λT (x) for all λ ∈ L+?
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New extension lemma (proof sketch)

For x ∈ X+ and λ ∈ L+, do we have T (λx) = λT (x)?
Recall C (K ) ⊆ L ⊆ C∞(K ). First let λ ∈ C (K )+.

Freudenthal Spectral Theorem: ∃ Q+-step functions αn such that
αn ↑ λ.
Because λ ∈ C(K), ∃ Q+-step functions βn such that βn ↓ λ.

αn ≤ λ ≤ βn
αnx ≤ λx ≤ βnx

T (αnx) ≤ T (λx) ≤ T (βnx)
αnT (x) ≤ T (λx) ≤ βnT (x)

Y is R-Archimedean and P-Archimedean, so

λT (x) ≤ T (λx) ≤ λT (x).

So T is C (K )+-homogeneous.
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New extension lemma (proof sketch)

Now let λ ∈ L+.

∃ sequence (πn) in P such that πn ↑ 1 and πnλ ∈ C (K ) for all n ∈ N. For

example, set πn(k) =

{
1 λ(k) ≤ n
0 λ(k) > n

for all k ∈ K . Then πnλ ↑ λ, and

πnT (λx) ↑ T (λx)
||

T (πnλx) = πnλT (x) ↑ λT (x)

∴ T (λx) = λT (x).
The rest of the proof is easy.

Extension lemma

If X and Y are L-vector lattices and Y is R-Archimedean and
P-Archimedean, then every additive P-homogeneous function
T : X+ → Y+ extends uniquely to a positive operator T̂ : X → Y .
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New Riesz-Kantorovich formulas

The Riesz-Kantorovich formulas

If X and Y are L-vector lattices and Y is Dedekind-complete and
P-Archimedean, then

Lob(X ,Y ) = Lreg(X ,Y ) is a Dedekind-complete L-vector lattice, and
for S ∈ Lob(X ,Y ), we have

(S ∨ 0)(x) = sup{S(y) : 0 ≤ y ≤ x}
for all x ∈ X+.

(Dedekind-complete =⇒ R-Archimedean)

The map T : X+ → Y+ given by x 7→ sup{S(y) : 0 ≤ y ≤ x} is additive
as in the classical case. We just need to show that it is P-homogeneous.
For π ∈ P, we have T (πx) = sup{S(y) : 0 ≤ y ≤ πx}

= sup{S(πz) : 0 ≤ z ≤ x}
= sup{πS(z) : 0 ≤ z ≤ x}
= πT (x).
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Aside...

For y ∈ Y , recall:
πy := inf{π ∈ P : πy = y}.

When is Y support-attaining, i.e., when do we have πyy = y?

For Y an L-vector lattice, the following are equivalent:

Y is P-Archimedean.

Y is support-attaining.

Every cyclic submodule of Y is projective (Ly ∼= πyL).
Y is a non-singular L-module.

Examples of support-attaining L-modules:

L-normed spaces

Projective L-modules (e.g. free L-modules)

Any L-module with an essential submodule that is support-attaining

(Infinite) sums, (infinite) products, and submodules of
support-attaining L-modules
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