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Sublattices

Let X be a vector lattice and A C X.
AV := the set of all finite suprema of elements of A.
May view AV as an increasing net.

If Y is a subspace of X then YV — YV is the sublattice of X
generated by Y.

Suppose X is an ordered vector space,Y a subspace of X.
Suppose that every finite subset of Y has supremum.
Then YV — YV is a vector lattice, and Y generates it.
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Finite-dimensional subsets

Let X be a Banach lattice, Y a finite-dimensional subspace of X,
A a bounded subset of Y.

Then AY is a convergent net.

In particular, AV is relatively compact and sup A exists and equals
lim AV,

Idea of proof: Y C I, = C(K), use Arzela—Ascoli Theorem.
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Regular operators and Riesz-Kantorovich formulae
X and Y vector lattices L,(X, Y) regular operators

Ordered vector space; generally, not a vector lattice.

Let S, T € L,(X,Y). If
sup{Su—i— Tv . uv> O,u—l—v:x}
exists for every x € X4 then SV T exists, and for every x € X4,

(SVv T)x:sup{5u+ Tv : u,v}O,u+v:x}
For T1,..., Tp € L,(X, Y), their supremum \/{_; T; exists if
n
sup{z Tixi @ X1,...,Xn =0, X1—|—---—|—X,,:x}
i=1

exists for every x € X, ; in this case, (\/,f':1 T;)x is given by this
supremum.
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Let X and Y be Banach lattices, T € L,(X,Y)

IT|l, =inf{||S]| : £T < S}.

1Tl =171

If | T| exists then || T||, = H|T\H

L.(X,Y) is an ordered Banach space under this norm.

If Y is order complete then |T| exists for all T € L,(X,Y)

In this case, L,.(X,Y) is a Banach lattice.
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Regular norm and duality

T—T* L(X,Y)— L(Y* X*)
[T =Tl

[Tl < [Tl

If | T| exists then |T*| < |T|*.

XLy ye TojyT  LIX,Y) = L(X,Y™)
iy Tl =T

iy Tlle <[l
If | T| exists then |jy T| < |T].
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L.(X,Y) is, generally, not a vector lattice

F(X,Y) is a subspace of L,(X,Y). Every finite set in F(X,Y)
has supremum.

So F(X, Y)Y — F(X,Y)V is a vector lattice inside L,(X, Y).
G(X,Y) = F(X,Y) = F(X,Y)"

F(X,Y) generates G(X,Y)

G(X,Y)CK(X,Y).

G(X,Y) is a normed lattice under the regular norm

So the closure G(X, Y)”'Hr in L,(X,Y) is the completion of
G(X,Y), and is a Banach lattice.
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Maps T +— T*and T — jy T

For T € G(X, V)" we have |T*| = [T,
Uy Tl =Jy|Tl, and [y Tl = [Tl
That is, the maps T — T* and T — jy T are lattice isometries on

G(X,Y)

Tl =17l

Idea of proof:
» Use Riesz-Kantorovich formula to show that the maps
preserve finite suprema of operators in F(X, Y);

» They extend to lattice homomorphisms on G(X, Y) and then

on X, )
> lIsometry: || T, = [[[T*[[| = [[ITI*]| = [ITI[| =TI
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Injective tensor product of Banach spaces, X ®. Y

Let X and Y be Banach spaces.

For x € X, y € Y, we may interpret x ® y as a rank-one operator
in L(X*,Y) via (x ® y)(x*) = x*(x)y.

X®Y — L(X*Y).

X ®: Y := the closure of X ® Y in L(X*, Y) with respect to the

operator norm.

Since the map T — jy T is an isometric embedding from L(X*,Y)
to L(X*, Y**), we may use L(X*, Y**) instead of L(X*,Y) in the
preceding construction:

View X ® Y as a subspace of L(X*, Y**), the closure of this
subspace may be identified with X ®. Y.
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Positive injective tensor product X ®.| Y

Let X and Y be Banach lattices. We want to use a similar
construction.

Obstacle: L(X*,Y) is not a Banach lattice.
L.(X*,Y) is a Banach space under ||-||,, but not a lattice.
But L.(X*, Y**) is a Banach lattice.

Define X ®|.| Y to be the closure of the sublattice generated by
X ® Y in L(X*, Y**) in the regular norm.

Alternative route: while L.(X*,Y) is not a lattice, G(X*,Y) is,
and X ® Y < G(X*,Y). Define X ®. Y to be the closure of the
sublattice generated by X ® Y in G(X*,Y) and then take the
closure in the regular norm.

The two approaches are equivalent because the map T — jy T is a
lattice isometry on G(X*,Y) (with respect to the regular norm).
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Vector lattice tensor product XQY

Fact: If X ® Y embeds bi-injectively into a vector lattice, the
sublattice generated by it is X®Y (up to a lattice isomorphism)

Since X ® Y embeds bi-injectively into G(X*,Y), X®Y equals
the sublattice generated by X ® Y in G(X*,Y).

Using two classical theorems by Fremlin and Talagrand about
density of X ® Y in X®Y, we can deduce that

lallj; = inf{llcll: = c € Xy ® Y, la| < c}

for every a € X®Y.

This is an alternative definition of ||-||.
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We represented X ® Y inside F(X*,Y) inside G(X*,Y).
Similarly, one can represent X* ® Y inside G(X, Y).

In this case, X* @ Y = F(X,Y).

Hence, the sublattice generated by this in G(X, Y)
X*®Y = G(X,Y)

Hence, X* @1 Y = G(X, V) "
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Density of F(X,Y)

Corollary. For every T € G(X, Y) there exists a positive operator
U of rank one such that for every ¢ > 0 there exists S € F(X,Y)
such that [T — S| <eU

Because this is a density property of tensor product.
It further implies that ||T — S| < || T = S||, < ¢||U||,-

We conclude that F(X, Y) is uniformly dense in G(X, Y),

hence dense in the regular and in the operator norm.

It follows that the closure of G(X, Y) in the regular or the operator
norm agrees with the closure of F(X, Y) is the same norm.

Corollary [Arendt,81] F(X, Y)” I is a Banach lattice.



