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Sublattices

Let X be a vector lattice and A ⊆ X .

A∨ := the set of all finite suprema of elements of A.

May view A∨ as an increasing net.

If Y is a subspace of X then Y ∨ − Y ∨ is the sublattice of X
generated by Y .

Suppose X is an ordered vector space,Y a subspace of X .
Suppose that every finite subset of Y has supremum.
Then Y ∨ − Y ∨ is a vector lattice, and Y generates it.
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Finite-dimensional subsets

Let X be a Banach lattice, Y a finite-dimensional subspace of X ,
A a bounded subset of Y .

Then A∨ is a convergent net.

In particular, A∨ is relatively compact and supA exists and equals
limA∨.

Idea of proof: Y ⊆ Iu = C (K ), use Arzelá–Ascoli Theorem.



Finite-dimensional subsets

Let X be a Banach lattice, Y a finite-dimensional subspace of X ,
A a bounded subset of Y .

Then A∨ is a convergent net.

In particular, A∨ is relatively compact and supA exists and equals
limA∨.

Idea of proof: Y ⊆ Iu = C (K ), use Arzelá–Ascoli Theorem.
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Regular operators and Riesz-Kantorovich formulae

X and Y vector lattices Lr (X ,Y ) regular operators

Ordered vector space; generally, not a vector lattice.

Let S ,T ∈ Lr (X ,Y ). If

sup
{
Su + Tv : u, v ⩾ 0, u + v = x

}
exists for every x ∈ X+ then S ∨ T exists, and for every x ∈ X+,

(S ∨ T )x = sup
{
Su + Tv : u, v ⩾ 0, u + v = x

}

For T1, . . . ,Tn ∈ Lr (X ,Y ), their supremum
∨n

i=1 Ti exists if

sup
{ n∑

i=1

Tixi : x1, . . . , xn ⩾ 0, x1 + · · ·+ xn = x
}

exists for every x ∈ X+; in this case,
(∨n

i=1 Ti

)
x is given by this

supremum.
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Regular norm

Let X and Y be Banach lattices, T ∈ Lr (X ,Y )

∥T∥r = inf
{
∥S∥ : ±T ⩽ S

}
.

∥T∥r ⩾ ∥T∥

If |T | exists then ∥T∥r =
∥∥|T |

∥∥
Lr (X ,Y ) is an ordered Banach space under this norm.

If Y is order complete then |T | exists for all T ∈ Lr (X ,Y )

In this case, Lr (X ,Y ) is a Banach lattice.
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Regular norm and duality

T 7→ T ∗ Lr (X ,Y ) → Lr (Y
∗,X ∗)

∥T ∗∥ = ∥T∥

∥T ∗∥r ⩽ ∥T∥r
If |T | exists then |T ∗| ⩽ |T |∗.

X
T−→ Y

jY−→ Y ∗∗ T 7→ jYT Lr (X ,Y ) → Lr (X ,Y ∗∗)

∥jYT∥ = ∥T∥

∥jYT∥r ⩽ ∥T∥r
If |T | exists then |jYT | ⩽ |T |.
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Suprema of finite-rank operators

Let X and Y be Banach lattices.

F (X ,Y ) = bounded operators of finite rank

f ⊗ x = f + ⊗ x+ − f + ⊗ x− − f − ⊗ x+ + f − ⊗ x−

F (X ,Y ) ⊆ Lr (X ,Y )

Lemma. If T1, . . . ,Tn ∈ F (X ,Y ) then
∨n

i=1 Ti exists and is
compact.

Proof. Suffices to show that supA exists where

A =
{ n∑

i=1

Tixi : x1, . . . , xn ⩾ 0, x1 + · · ·+ xn = x
}

for every x ⩾ 0.

A is contained in the subspace generated by the ranges of
T1, . . . ,Tn.

A is bounded because
∥∥∑n

i=1 Tixi
∥∥ ⩽

(∑n
i=1∥Ti∥

)
∥x∥
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G (X ,Y )

Lr (X ,Y ) is, generally, not a vector lattice

F (X ,Y ) is a subspace of Lr (X ,Y ). Every finite set in F (X ,Y )
has supremum.

So F (X ,Y )∨ − F (X ,Y )∨ is a vector lattice inside Lr (X ,Y ).

G (X ,Y ) = F (X ,Y )∨ − F (X ,Y )∨

F (X ,Y ) generates G (X ,Y )

G (X ,Y ) ⊆ K (X ,Y ).

G (X ,Y ) is a normed lattice under the regular norm

So the closure G (X ,Y )
∥·∥r

in Lr (X ,Y ) is the completion of
G (X ,Y ), and is a Banach lattice.
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Maps T 7→ T ∗ and T 7→ jYT

For T ∈ G (X ,Y )
∥·∥r

we have |T ∗| = |T |∗, ∥T ∗∥r = ∥T∥r ,
|jYT | = jY |T |, and ∥jYT∥r = ∥T∥r .

That is, the maps T 7→ T ∗ and T 7→ jYT are lattice isometries on

G (X ,Y )
∥·∥r

.

Idea of proof:

▶ Use Riesz-Kantorovich formula to show that the maps
preserve finite suprema of operators in F (X ,Y );

▶ They extend to lattice homomorphisms on G (X ,Y ) and then

on G (X ,Y )
∥·∥r

▶ Isometry: ∥T ∗∥r =
∥∥|T ∗|

∥∥ =
∥∥|T |∗

∥∥ =
∥∥|T |

∥∥ = ∥T∥r .
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Injective tensor product of Banach spaces, X ⊗ε Y

Let X and Y be Banach spaces.

For x ∈ X , y ∈ Y , we may interpret x ⊗ y as a rank-one operator
in L(X ∗,Y ) via (x ⊗ y)(x∗) = x∗(x)y .

X ⊗ Y ↪→ L(X ∗,Y ).

X ⊗ε Y := the closure of X ⊗ Y in L(X ∗,Y ) with respect to the
operator norm.

Since the map T 7→ jYT is an isometric embedding from L(X ∗,Y )
to L(X ∗,Y ∗∗), we may use L(X ∗,Y ∗∗) instead of L(X ∗,Y ) in the
preceding construction:

View X ⊗ Y as a subspace of L(X ∗,Y ∗∗), the closure of this
subspace may be identified with X ⊗ε Y .
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Positive injective tensor product X ⊗|ε| Y

Let X and Y be Banach lattices. We want to use a similar
construction.

Obstacle: L(X ∗,Y ) is not a Banach lattice.

Lr (X
∗,Y ) is a Banach space under ∥·∥r , but not a lattice.

But Lr (X
∗,Y ∗∗) is a Banach lattice.

Define X ⊗|ε| Y to be the closure of the sublattice generated by
X ⊗ Y in Lr (X

∗,Y ∗∗) in the regular norm.

Alternative route: while Lr (X
∗,Y ) is not a lattice, G (X ∗,Y ) is,

and X ⊗ Y ↪→ G (X ∗,Y ). Define X ⊗|ε| Y to be the closure of the
sublattice generated by X ⊗ Y in G (X ∗,Y ) and then take the
closure in the regular norm.

The two approaches are equivalent because the map T 7→ jYT is a
lattice isometry on G (X ∗,Y ) (with respect to the regular norm).
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Vector lattice tensor product X ⊗̄Y

Fact: If X ⊗ Y embeds bi-injectively into a vector lattice, the
sublattice generated by it is X ⊗̄Y (up to a lattice isomorphism)

Since X ⊗ Y embeds bi-injectively into G (X ∗,Y ), X ⊗̄Y equals
the sublattice generated by X ⊗ Y in G (X ∗,Y ).

Using two classical theorems by Fremlin and Talagrand about
density of X ⊗ Y in X ⊗̄Y , we can deduce that

∥a∥|ε| = inf{∥c∥ε : c ∈ X+ ⊗ Y+, |a| ⩽ c
}

for every a ∈ X ⊗̄Y .

This is an alternative definition of ∥·∥|ε|.
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We represented X ⊗ Y inside F (X ∗,Y ) inside G (X ∗,Y ).

Similarly, one can represent X ∗ ⊗ Y inside G (X ,Y ).

In this case, X ∗ ⊗ Y = F (X ,Y ).

Hence, the sublattice generated by this in G (X ,Y )

X ∗⊗̄Y = G (X ,Y )

Hence, X ∗ ⊗|ε| Y = G (X ,Y )
∥·∥r

.
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Density of F (X ,Y )

Corollary. For every T ∈ G (X ,Y ) there exists a positive operator
U of rank one such that for every ε > 0 there exists S ∈ F (X ,Y )
such that |T − S | ⩽ εU.

Because this is a density property of tensor product.

It further implies that ∥T − S∥ ⩽ ∥T − S∥r ⩽ ε∥U∥r .

We conclude that F (X ,Y ) is uniformly dense in G (X ,Y ),
hence dense in the regular and in the operator norm.
It follows that the closure of G (X ,Y ) in the regular or the operator
norm agrees with the closure of F (X ,Y ) is the same norm.

Corollary [Arendt,81] F (X ,Y )
∥·∥r

is a Banach lattice.
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