Isomorphisms of Lattices of Lipschitz Functions

Wee-Kee Tang

Nanyang Technological University

Thanks

- The Positivity XII conference organizers, Prof Karim Boulabiar and team.
- School of Physical and Mathematical Sciences, Nanyang Technological University.
- AcRF RG14/24, Ministry of Education, Singapore.

• Let X, Y be a Hausdorff topological spaces, $A(X) \subseteq C(X)$, $A(Y) \subseteq C(Y)$.

- Let X, Y be a Hausdorff topological spaces, $A(X) \subseteq C(X)$, $A(Y) \subseteq C(Y)$.
- Let $f, g, h \in A(X)$. Denote $[f \neq h] = \{x \in X : f(x) \neq h(x)\}.$

- Let X, Y be a Hausdorff topological spaces, $A(X) \subseteq C(X)$, $A(Y) \subseteq C(Y)$.
- Let $f, g, h \in A(X)$. Denote $[f \neq h] = \{x \in X : f(x) \neq h(x)\}.$
- We say that $f \perp_h g$ if $[f \neq h] \cap [g \neq h] = \emptyset$.

- Let X, Y be a Hausdorff topological spaces, $A(X) \subseteq C(X)$, $A(Y) \subseteq C(Y)$.
- Let $f, g, h \in A(X)$. Denote $[f \neq h] = \{x \in X : f(x) \neq h(x)\}.$
- We say that $f \perp_h g$ if $[f \neq h] \cap [g \neq h] = \emptyset$.
- Let $h \in A(X)$. A bijection $T : A(X) \rightarrow A(Y)$ is a \perp_{h} -isomorphism if

$$f \perp_h g \Leftrightarrow Tf \perp_{Th} Tg$$
.

- Let X, Y be a Hausdorff topological spaces, $A(X) \subseteq C(X)$, $A(Y) \subseteq C(Y)$.
- Let f, g, $h \in A(X)$. Denote $[f \neq h] = \{x \in X : f(x) \neq h(x)\}.$
- We say that $f \perp_h g$ if $[f \neq h] \cap [g \neq h] = \emptyset$.
- Let $h \in A(X)$. A bijection $T:A(X) \to A(Y)$ is a \bot_h -isomorphism if

$$f \perp_h g \Leftrightarrow Tf \perp_{Th} Tg$$
.

• T is a \perp -isomorphism if it is a \perp_h -isomorphism for all $h \in A(X)$.

• Let X, Y be complete metric spaces and d denote the metrics.

- Let X, Y be complete metric spaces and d denote the metrics.
- Define the ρ -metric corresponding to d by

$$ho\left(p,q
ight) =rac{d\left(p,q
ight) }{\leftert p
ightert ee \leftert \leftert \leftee l
ightert ee 1
ight) },$$

where $|\cdot|$ denotes the distance to some fixed point.

- Let X, Y be complete metric spaces and d denote the metrics.
- Define the ρ -metric corresponding to d by

$$ho\left(p,q
ight)=rac{d\left(p,q
ight)}{\left|p
ight|ee\left|q
ight|ee1},$$

where $|\cdot|$ denotes the distance to some fixed point.

• Strictly speaking, ρ is not a metric,

- Let X, Y be complete metric spaces and d denote the metrics.
- Define the ρ -metric corresponding to d by

$$ho\left(p,q
ight)=rac{d\left(p,q
ight)}{\left|p
ight|ee\left|q
ight|ee1},$$

where $|\cdot|$ denotes the distance to some fixed point.

- Strictly speaking, ρ is not a metric,
- but it is equivalent to a complete bounded metric which is topologically equivalent to d.

- Let X, Y be complete metric spaces and d denote the metrics.
- Define the ρ -metric corresponding to d by

$$ho\left(p,q
ight)=rac{d\left(p,q
ight)}{\left|p
ight|ee \left|q
ight|ee 1},$$

where $|\cdot|$ denotes the distance to some fixed point.

- Strictly speaking, ρ is not a metric,
- but it is equivalent to a complete bounded metric which is topologically equivalent to d.
- Lip (X, d) = set of Lipschitz functions on X.

- Let X, Y be complete metric spaces and d denote the metrics.
- Define the ρ -metric corresponding to d by

$$ho\left(p,q
ight)=rac{d\left(p,q
ight)}{\left|p
ight|ee \left|q
ight|ee 1},$$

where $|\cdot|$ denotes the distance to some fixed point.

- Strictly speaking, ρ is not a metric,
- but it is equivalent to a complete bounded metric which is topologically equivalent to d.
- Lip (X, d) = set of Lipschitz functions on X.

Theorem 1 (Leung &T. 2024)

If $\operatorname{Lip}(X,d)$ is \perp -isomorphic to $\operatorname{Lip}(Y,d)$, then there is a Lipschitz homeomphism φ from (X,ρ) to (Y,ρ) .

• $Lip^*(X, d) = set$ of bounded Lipschitz functions on X.

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

Let X, Y be complete metric spaces. Then the following are equivalent.

1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- 1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;
- 2. $\mathsf{Lip}^*(X)$ and $\mathsf{Lip}(Y)$ are linearly \perp -isomorphic;

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- 1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;
- 2. $Lip^*(X)$ and Lip(Y) are linearly \perp -isomorphic;
- 3. $Lip^*(X)$ and Lip(Y) are order isomorphic;

- $\operatorname{Lip}^*(X, d) = \operatorname{set}$ of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- 1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;
- 2. $Lip^*(X)$ and Lip(Y) are linearly \perp -isomorphic;
- 3. $Lip^*(X)$ and Lip(Y) are order isomorphic;
- 4. $Lip^*(X)$ and Lip(Y) are linearly order isomorphic;

- Lip* (X, d) = set of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- 1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;
- 2. $Lip^*(X)$ and Lip(Y) are linearly \perp -isomorphic;
- 3. $Lip^*(X)$ and Lip(Y) are order isomorphic;
- 4. $Lip^*(X)$ and Lip(Y) are linearly order isomorphic;
- 5. $Lip^*(X)$ and Lip(Y) are isomorphic as vector lattices;

- $\operatorname{Lip}^*(X, d) = \operatorname{set}$ of bounded Lipschitz functions on X.
- The following theorem can be deduced from the results of Leung and T.

Theorem 2

- 1. $Lip^*(X)$ and Lip(Y) are \perp -isomorphic;
- 2. $Lip^*(X)$ and Lip(Y) are linearly \perp -isomorphic;
- 3. $Lip^*(X)$ and Lip(Y) are order isomorphic;
- 4. $Lip^*(X)$ and Lip(Y) are linearly order isomorphic;
- 5. $Lip^*(X)$ and Lip(Y) are isomorphic as vector lattices;
- 6. $(X, d \wedge 1)$ and (Y, ρ) are Lipschitz homeomorphic.

• In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that

- In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that
 - 1. $\operatorname{Lip}^*(\mathbb{R})$ and $\operatorname{Lip}(\mathbb{R})$ are isomorphic as vector lattices.

- In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that
 - 1. $\operatorname{Lip}^*(\mathbb{R})$ and $\operatorname{Lip}(\mathbb{R})$ are isomorphic as vector lattices.
 - 2. $\operatorname{Lip}^*(E)$ and $\operatorname{Lip}(F)$ are not isomorphic as vector lattices if E, F are normed spaces with $\dim E > 1$.

- In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that
 - 1. $\operatorname{Lip}^*(\mathbb{R})$ and $\operatorname{Lip}(\mathbb{R})$ are isomorphic as vector lattices.
 - 2. $\operatorname{Lip}^*(E)$ and $\operatorname{Lip}(F)$ are not isomorphic as vector lattices if E, F are normed spaces with $\dim E > 1$.
- It is not known if $Lip^*(X)$ and Lip(X) are isomorphic as vector lattices, where X is a metric space.

- In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that
 - 1. $\operatorname{Lip}^*(\mathbb{R})$ and $\operatorname{Lip}(\mathbb{R})$ are isomorphic as vector lattices.
 - 2. $\operatorname{Lip}^*(E)$ and $\operatorname{Lip}(F)$ are not isomorphic as vector lattices if E, F are normed spaces with $\dim E > 1$.
- It is not known if $Lip^*(X)$ and Lip(X) are isomorphic as vector lattices, where X is a metric space.
- In this talk, we present the following result:

- In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed that
 - 1. $\operatorname{Lip}^*(\mathbb{R})$ and $\operatorname{Lip}(\mathbb{R})$ are isomorphic as vector lattices.
 - 2. $\operatorname{Lip}^*(E)$ and $\operatorname{Lip}(F)$ are not isomorphic as vector lattices if E, F are normed spaces with $\dim E > 1$.
- It is not known if $Lip^*(X)$ and Lip(X) are isomorphic as vector lattices, where X is a metric space.
- In this talk, we present the following result:

Theorem 3 (Leung & T. 2025)

Let X be a unbounded closed convex subset of a Banach space E. If $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic then X is either a ray or a line.

Suppose that X is not a ray or a line. Wlog $0 \in X$. According to Theorem 2, if $Lip^*(X)$ and Lip(X) are \bot -isomorphic,

Suppose that X is not a ray or a line. Wlog $0 \in X$. According to Theorem 2, if $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic, then there is a C-Lipschitz homeomorphism $\varphi:(X,d\wedge 1)\to (X,\rho)$.

Suppose that X is not a ray or a line. Wlog $0 \in X$. According to Theorem 2, if $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic, then there is a C-Lipschitz homeomorphism $\varphi:(X,d\wedge 1)\to (X,\rho)$. It can be shown that $\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2}\leq \|\varphi\left(x\right)\|\leq e^{2C\|x\|+1}$. In particular, $\|\varphi\left(x\right)\|\to\infty$ iff $\|x\|\to\infty$.

Suppose that X is not a ray or a line. Wlog $0 \in X$. According to Theorem 2, if $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic, then there is a C-Lipschitz homeomorphism $\varphi:(X,d\wedge 1)\to (X,\rho)$. It can be shown that $\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2}\leq \|\varphi(x)\|\leq e^{2C\|x\|+1}$. In particular, $\|\varphi(x)\|\to\infty$ iff $\|x\|\to\infty$. Define $s_X:[1,\infty)\to[0,2]$ by $s_X(r)=\sup\left\{\min\left\{\|u+v\|,\|u-v\|\right\}:\|u\|=\|v\|=1, ru, rv\in X\right\}$. s_X is decreasing. Set $s=\lim_{r\to\infty} s_X(r)$.

• Case 1. s > 0.

Suppose that X is not a ray or a line. Wlog $0 \in X$. According to Theorem 2, if $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic, then there is a C-Lipschitz homeomorphism $\varphi:(X,d\wedge 1)\to (X,\rho)$. It can be shown that $\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2}\leq \|\varphi(x)\|\leq e^{2C\|x\|+1}$. In particular, $\|\varphi(x)\|\to\infty$ iff $\|x\|\to\infty$. Define $s_X:[1,\infty)\to[0,2]$ by $s_X(r)=\sup\left\{\min\left\{\|u+v\|,\|u-v\|\right\}:\|u\|=\|v\|=1, ru, rv\in X\right\}$. s_X is decreasing. Set $s=\lim_{r\to\infty} s_X(r)$.

- Case 1. s > 0.
- Case 2. s = 0.

Case 1. s > 0.

In this case, we have $s = \lim_{r \to \infty} s_X(r) > 0$, where $s_X(r) = \sup \{\min \{\|u + v\|, \|u - v\|\} : \|u\| = \|v\| = 1, ru, rv \in X\}$.

Case 1. s > 0.

In this case, we have $s = \lim_{r \to \infty} s_X(r) > 0$, where $s_X(r) = \sup \{ \min \{ \|u + v\|, \|u - v\| \} : \|u\| = \|v\| = 1, ru, rv \in X \}$. Fix $c \in (0, s)$. For every r > 0, $s_X(r) > c > 0$. Choose $u, v \in X$ so that $\|u\| = \|v\| = 1$, ru, $rv \in X$ and $\min \{ \|u + v\|, \|u - v\| \} > c$. Call the pair of unit vectors $\{u, v\}$ a (c, r)-divergent pair.

Case 1. s > 0.

In this case, we have $s = \lim_{r \to \infty} s_X(r) > 0$, where $s_X(r) = \sup \{ \min \{ \|u + v\|, \|u - v\| \} : \|u\| = \|v\| = 1, ru, rv \in X \}$. Fix $c \in (0, s)$. For every r > 0, $s_X(r) > c > 0$. Choose $u, v \in X$ so that $\|u\| = \|v\| = 1, ru, rv \in X$ and $\min \{ \|u + v\|, \|u - v\| \} > c$. Call the pair of unit vectors $\{u, v\}$ a (c, r)-divergent pair.

Lemma 4

Suppose that $\lim_{r\to\infty} s_X(r) > c > 0$. Let $r \in [1,\infty)$. For all $w \in X$, ||w|| = r There is a path γ in $X \setminus B(0,\frac{rc}{26})$ with $L(\gamma) \le 4r$ joining w and ru, where u belongs to some (c,r)-divergent pair $\{u,v\}$.

In this case, we have $s = \lim_{r \to \infty} s_X(r) > 0$, where $s_X(r) = \sup \{\min \{\|u+v\|, \|u-v\|\} : \|u\| = \|v\| = 1, ru, rv \in X\}$. Fix $c \in (0, s)$. For every r > 0, $s_X(r) > c > 0$. Choose $u, v \in X$ so that $\|u\| = \|v\| = 1, ru, rv \in X$ and $\min \{\|u+v\|, \|u-v\|\} > c$. Call the pair of unit vectors $\{u, v\}$ a (c, r)-divergent pair.

Lemma 4

Suppose that $\lim_{r\to\infty} s_X(r) > c > 0$. Let $r \in [1,\infty)$. For all $w \in X$, $\|w\| = r$ There is a path γ in $X \setminus B(0,\frac{rc}{26})$ with $L(\gamma) \le 4r$ joining w and ru, where u belongs to some (c,r)-divergent pair $\{u,v\}$.

Recall

$$\frac{\exp\left(\frac{\|\mathbf{x}\|}{2C}\right)}{2} \le \|\varphi\left(\mathbf{x}\right)\| \le e^{2C\|\mathbf{x}\|+1} - - - (\bigstar)$$

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

Let $N \in \mathbb{N}$. By definition of $s_X(N)$, there exists $u, v \in X$, $\|u\| = \|v\| = 1$ so that $Nu, Nv \in X$, $\min \{\|u + v\|, \|u - v\|\} > c > 0$. (i.e., $\{u, v\}$ is a (c, N)-divergent pair).

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

Let $N \in \mathbb{N}$. By definition of s_X (N), there exists $u, v \in X$, $\|u\| = \|v\| = 1$ so that $Nu, Nv \in X$, $\min \{\|u + v\|, \|u - v\|\} > c > 0$. (i.e., $\{u, v\}$ is a (c, N)-divergent pair). It follows from (\bigstar) that $\|\varphi(Nu)\|, \|\varphi(Nv)\| \geq \frac{\exp\left(\frac{N}{2C}\right)}{2}$.

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

Let $N \in \mathbb{N}$. By definition of s_X (N), there exists $u, v \in X$, $\|u\| = \|v\| = 1$ so that $Nu, Nv \in X$, $\min \{\|u+v\|, \|u-v\|\} > c > 0$. (i.e., $\{u,v\}$ is a (c,N)-divergent pair). It follows from (\bigstar) that $\|\varphi(Nu)\|, \|\varphi(Nv)\| \geq \frac{\exp\left(\frac{N}{2C}\right)}{2}$. So, there exist $a \in [0, Nu]$ and $b \in [0, Nv]$, $\|a\|, \|b\| \geq 1$ so that $\|\varphi(a)\| = \|\varphi(b)\| = \frac{\exp\left(\frac{N}{2C}\right)}{2}$. Since $\{u,v\}$ is a (c,N)-divergent pair, it can be shown that there is $u^* \in E^*$ so that $\|u^*\| \leq \frac{2}{c}$ and $u^*(u) = 1$, $u^*(v) = 0$.

Wee-Kee Tang, Nanyang Technological University

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

Let $N \in \mathbb{N}$. By definition of s_X (N), there exists $u, v \in X$, $\|u\| = \|v\| = 1$ so that $Nu, Nv \in X$, $\min \{\|u+v\|, \|u-v\|\} > c > 0$. (i.e., $\{u, v\}$ is a (c, N)-divergent pair). It follows from (\bigstar) that $\|\varphi(Nu)\|, \|\varphi(Nv)\| \geq \frac{\exp\left(\frac{N}{2C}\right)}{2}$. So, there exist $a \in [0, Nu]$ and $b \in [0, Nv]$, $\|a\|, \|b\| \geq 1$ so that $\|\varphi(a)\| = \|\varphi(b)\| = \frac{\exp\left(\frac{N}{2C}\right)}{2}$. Since $\{u, v\}$ is a (c, N)-divergent pair, it can be shown that there

is $u^* \in E^*$ so that $||u^*|| \le \frac{2}{c}$ and $u^*(u) = 1$, $u^*(v) = 0$. Thus

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a||.---(\lozenge)$$

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a|| . - - - (\lozenge)$$

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a||. --- (\lozenge)$$

Since $\limsup s_X(r) > c > 0$, by Lemma 4, there is a path γ in $X \setminus B\left(0, \frac{c}{26}r\right)$ joining $\varphi\left(a\right)$ and $\varphi\left(b\right)$ with $L\left(\gamma\right) \leq 8r$, where $r = \|\varphi\left(a\right)\| = \|\varphi\left(b\right)\|$. Let $\{\varphi\left(a\right) = y_0, y_1, \cdots, y_n = \varphi\left(b\right)\}$ be points on the path γ so $\sum \|y_i - y_{i-1}\| \leq L\left(\gamma\right) \leq 8r$ and $\|y_i\| \geq \frac{c}{26}r$ for all i.

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a||.---(\lozenge)$$

Since $\limsup s_X(r) > c > 0$, by Lemma 4, there is a path γ in $X \setminus B\left(0, \frac{c}{26}r\right)$ joining $\varphi(a)$ and $\varphi(b)$ with $L(\gamma) \leq 8r$, where $r = \|\varphi(a)\| = \|\varphi(b)\|$. Let $\{\varphi(a) = y_0, y_1, \cdots, y_n = \varphi(b)\}$ be points on the path γ so $\sum \|y_i - y_{i-1}\| \leq L(\gamma) \leq 8r$ and $\|y_i\| \geq \frac{c}{26}r$ for all i. By inserting additional partition points if necessary, we may assume that $\|x_i - x_{i-1}\| < 1$, where $\varphi(x_i) = y_i$.

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a||.---(\lozenge)$$

Since $\limsup s_X(r) > c > 0$, by Lemma 4, there is a path γ in $X \setminus B\left(0,\frac{c}{26}r\right)$ joining $\varphi\left(a\right)$ and $\varphi\left(b\right)$ with $L\left(\gamma\right) \leq 8r$, where $r = \|\varphi\left(a\right)\| = \|\varphi\left(b\right)\|$. Let $\{\varphi\left(a\right) = y_0, y_1, \cdots, y_n = \varphi\left(b\right)\}$ be points on the path γ so $\sum \|y_i - y_{i-1}\| \leq L\left(\gamma\right) \leq 8r$ and $\|y_i\| \geq \frac{c}{26}r$ for all i. By inserting additional partition points if necessary, we may assume that $\|x_i - x_{i-1}\| < 1$, where $\varphi\left(x_i\right) = y_i$. Then

$$||a - b|| \le \sum ||x_{i} - x_{i-1}|| = \sum (||x_{i} - x_{i-1}|| \land 1)$$

$$\le C \sum \rho (y_{i-1}, y_{i}) = C \sum \frac{||y_{i} - y_{i-1}||}{||y_{i}|| \lor ||y_{i-1}|| \lor 1},$$

$$\le C \frac{\sum ||y_{i} - y_{i-1}||}{\frac{c}{26}r} \le \frac{26C (8r)}{cr} \le \frac{208C}{c}.$$

$$||a-b|| \ge \frac{|u^*(a-b)|}{||u^*||} \ge \frac{c}{2} ||a||.---(\lozenge)$$

Since $\limsup s_X(r) > c > 0$, by Lemma 4, there is a path γ in $X \setminus B\left(0,\frac{c}{26}r\right)$ joining $\varphi\left(a\right)$ and $\varphi\left(b\right)$ with $L\left(\gamma\right) \leq 8r$, where $r = \|\varphi\left(a\right)\| = \|\varphi\left(b\right)\|$. Let $\{\varphi\left(a\right) = y_0, y_1, \cdots, y_n = \varphi\left(b\right)\}$ be points on the path γ so $\sum \|y_i - y_{i-1}\| \leq L\left(\gamma\right) \leq 8r$ and $\|y_i\| \geq \frac{c}{26}r$ for all i. By inserting additional partition points if necessary, we may assume that $\|x_i - x_{i-1}\| < 1$, where $\varphi\left(x_i\right) = y_i$. Then

$$||a - b|| \le \sum ||x_{i} - x_{i-1}|| = \sum (||x_{i} - x_{i-1}|| \land 1)$$

$$\le C \sum \rho (y_{i-1}, y_{i}) = C \sum \frac{||y_{i} - y_{i-1}||}{||y_{i}|| \lor ||y_{i-1}|| \lor 1},$$

$$\le C \frac{\sum ||y_{i} - y_{i-1}||}{\frac{c}{26}r} \le \frac{26C (8r)}{cr} \le \frac{208C}{c}.$$

Hence, by (\lozenge) , $\frac{c}{2} ||a|| \leq \frac{208C}{c}$.

$$\frac{c}{2} \|\mathbf{a}\| \leq \frac{208C}{c}. - - - (\blacktriangle)$$

Recall:

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

$$\frac{c}{2} \|\mathbf{a}\| \le \frac{208C}{c}. - - - (\blacktriangle)$$

Recall:

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

By
$$(\bigstar)$$
, $\|\varphi\left(\mathbf{a}\right)\| \leq e^{2C\|\mathbf{a}\|+1}$. Thus $2C\|\mathbf{a}\|+1 \geq \log\|\varphi\left(\mathbf{a}\right)\| = \log\frac{\exp\left(\frac{N}{2C}\right)}{2}$.

$$\frac{c}{2} \|\mathbf{a}\| \le \frac{208C}{c}. - - - (\blacktriangle)$$

Recall:

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

By
$$(\bigstar)$$
, $\|\varphi(a)\| \le e^{2C\|a\|+1}$. Thus $2C\|a\|+1 \ge \log\|\varphi(a)\| = \log\frac{\exp\left(\frac{N}{2C}\right)}{2}$. $\|a\| \ge \frac{N}{2C^2} + k$

for some constant k. Then

$$\frac{c}{2} \|\mathbf{a}\| \le \frac{208C}{c}. - - - (\blacktriangle)$$

Recall:

$$\frac{\exp\left(\frac{\|x\|}{2C}\right)}{2} \le \|\varphi(x)\| \le e^{2C\|x\|+1} - - - (\bigstar)$$

By
$$(\bigstar)$$
, $\|\varphi(a)\| \le e^{2C\|a\|+1}$. Thus $2C\|a\|+1 \ge \log \|\varphi(a)\| = \log \frac{\exp(\frac{N}{2C})}{2}$.

$$||a|| \geq \frac{N}{2C^2} + k$$

for some constant k. Then by (\blacktriangle),

$$\frac{208C}{c} \ge \frac{c \|a\|}{2} \ge \frac{c}{2} \left(\frac{N}{2C^2} + k \right).$$

This is a contradiction as N can be taken arbitrarily large. (Case 1

 Let X be an unbounded closed convex set of a Banach space E. We have shown that

 Let X be an unbounded closed convex set of a Banach space E. We have shown that

Theorem 3

Let X be a unbounded closed convex subset of a Banach space E. If $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic then X is either a ray or a line.

 Let X be an unbounded closed convex set of a Banach space E. We have shown that

Theorem 3

Let X be a unbounded closed convex subset of a Banach space E. If $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(X)$ are \bot -isomorphic then X is either a ray or a line.

• What about \perp -isomorphism between $\operatorname{Lip}^*(X)$ and $\operatorname{Lip}(Y)$, for different X, Y?

Theorem 5

Let X, Y be unbounded closed convex subsets of Banach spaces E, F respectively.

- (i) If $\lim_{r\to\infty} s_X(r) > 0$, then $\operatorname{Lip}^*(X)$ is not \perp -isomorphic to $\operatorname{Lip}(Y)$.
- (ii) If $\lim_{r\to\infty} s_X(r) = \lim_{r\to\infty} s_Y(r) = 0$, and $\operatorname{Lip}^*(X) \perp$ -isomorphic to $\operatorname{Lip}(Y)$, then X, Y are both lines or rays.
 - What about $\lim_{r\to\infty} s_X(r) = 0$ and $\lim_{r\to\infty} s_Y(r) > 0$?

Theorem 5

Let X, Y be unbounded closed convex subsets of Banach spaces E, F respectively.

- (i) If $\lim_{r\to\infty} s_X(r) > 0$, then $\operatorname{Lip}^*(X)$ is not \perp -isomorphic to $\operatorname{Lip}(Y)$.
- (ii) If $\lim_{r\to\infty} s_X(r) = \lim_{r\to\infty} s_Y(r) = 0$, and $\operatorname{Lip}^*(X) \perp$ -isomorphic to $\operatorname{Lip}(Y)$, then X, Y are both lines or rays.
 - What about $\lim_{r\to\infty} s_X(r) = 0$ and $\lim_{r\to\infty} s_Y(r) > 0$?

Example 6

There are unbounded convex sets X, $Y\subseteq \ell_1$, $\lim_{r\to\infty} s_X\left(r\right)=0$ and $\lim_{r\to\infty} s_Y\left(r\right)>0$ so that $\operatorname{Lip}^*\left(X\right)$ is \perp -isomorphic to $\operatorname{Lip}\left(Y\right)$.

Theorem 5

Let X, Y be unbounded closed convex subsets of Banach spaces E, F respectively.

- (i) If $\lim_{r\to\infty} s_X(r) > 0$, then $\operatorname{Lip}^*(X)$ is not \perp -isomorphic to $\operatorname{Lip}(Y)$.
- (ii) If $\lim_{r\to\infty} s_X(r) = \lim_{r\to\infty} s_Y(r) = 0$, and $\operatorname{Lip}^*(X) \perp$ -isomorphic to $\operatorname{Lip}(Y)$, then X, Y are both lines or rays.
 - What about $\lim_{r\to\infty} s_X(r) = 0$ and $\lim_{r\to\infty} s_Y(r) > 0$?

Example 6

There are unbounded convex sets X, $Y \subseteq \ell_1$, $\lim_{r \to \infty} s_X(r) = 0$ and $\lim_{r \to \infty} s_Y(r) > 0$ so that $\operatorname{Lip}^*(X)$ is \bot -isomorphic to $\operatorname{Lip}(Y)$.

• Thank you.