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Definitions

Let X ,Y be a Hausdorff topological spaces, A (X ) ⊆ C (X ) ,
A (Y ) ⊆ C (Y ) .

Let f , g , h ∈ A (X ) . Denote
[f 6= h] = {x ∈ X : f (x) 6= h(x)}.
We say that f ⊥h g if [f 6= h] ∩ [g 6= h] = ∅.
Let h ∈ A (X ) . A bijection T : A (X )→ A (Y ) is a
⊥h-isomorphism if

f ⊥h g ⇔ Tf ⊥Th Tg .

T is a ⊥-isomorphism if it is a ⊥h-isomorphism for all
h ∈ A (X ) .
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Sets of Lipschitz Functions

Let X ,Y be complete metric spaces and d denote the metrics.

Define the ρ-metric corresponding to d by

ρ (p, q) =
d (p, q)
|p| ∨ |q| ∨ 1 ,

where |·| denotes the distance to some fixed point.
Strictly speaking, ρ is not a metric,

but it is equivalent to a complete bounded metric which is
topologically equivalent to d .

Lip (X , d) = set of Lipschitz functions on X .

Theorem 1 (Leung &T. 2024)
If Lip (X , d) is ⊥-isomorphic to Lip (Y , d) , then there is a
Lipschitz homeomphism ϕ from (X , ρ) to (Y , ρ) .
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Sets of Lipschitz Functions

Lip∗ (X , d) = set of bounded Lipschitz functions on X .

The following theorem can be deduced from the results of
Leung and T.

Theorem 2
Let X , Y be complete metric spaces. Then the following are
equivalent.

1. Lip∗ (X ) and Lip (Y ) are ⊥-isomorphic;
2. Lip∗ (X ) and Lip (Y ) are linearly ⊥-isomorphic;
3. Lip∗ (X ) and Lip (Y ) are order isomorphic;
4. Lip∗ (X ) and Lip (Y ) are linearly order isomorphic;
5. Lip∗ (X ) and Lip (Y ) are isomorphic as vector lattices;
6. (X , d ∧ 1) and (Y , ρ) are Lipschitz homeomorphic.
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Some Known Results

In [F. Cabello & J. Cabello, PAMS, 2019], the authors showed
that

1. Lip∗ (R) and Lip (R) are isomorphic as vector lattices.
2. Lip∗ (E ) and Lip (F ) are not isomorphic as vector lattices if E ,
F are normed spaces with dimE > 1.

It is not known if Lip∗ (X ) and Lip (X ) are isomorphic as
vector lattices, where X is a metric space.

In this talk, we present the following result:

Theorem 3 (Leung & T. 2025)
Let X be a unbounded closed convex subset of a Banach space E.
If Lip∗ (X ) and Lip (X ) are ⊥-isomorphic then X is either a ray or
a line.
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Proof of Main Result

Suppose that X is not a ray or a line. Wlog 0 ∈ X . According to
Theorem 2, if Lip∗ (X ) and Lip (X ) are ⊥-isomorphic,

then there
is a C -Lipschitz homeomorphism ϕ : (X , d ∧ 1)→ (X , ρ). It can

be shown that
exp

(
‖x‖
2C

)
2 ≤ ‖ϕ (x)‖ ≤ e2C ‖x‖+1. In particular,

‖ϕ (x)‖ → ∞ iff ‖x‖ → ∞.
Define sX : [1,∞)→ [0, 2] by sX (r) =
sup {min {‖u + v‖ , ‖u − v‖} : ‖u‖ = ‖v‖ = 1, ru, rv ∈ X} . sX is
decreasing. Set s = limr→∞ sX (r) .

Case 1. s > 0.

Case 2. s = 0.
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Case 1. s > 0.

In this case, we have s = limr→∞ sX (r) > 0, where sX (r) =
sup {min {‖u + v‖ , ‖u − v‖} : ‖u‖ = ‖v‖ = 1, ru, rv ∈ X} .

Fix c ∈ (0, s) . For every r > 0, sX (r) > c > 0. Choose u, v ∈ X
so that ‖u‖ = ‖v‖ = 1, ru, rv ∈ X and
min {‖u + v‖ , ‖u − v‖} > c. Call the pair of unit vectors {u, v} a
(c , r)-divergent pair.

Lemma 4
Suppose that limr→∞ sX (r) > c > 0. Let r ∈ [1,∞). For all
w ∈ X , ‖w‖ = r There is a path γ in X \ B(0, rc26 ) with
L (γ) ≤ 4r joining w and ru, where u belongs to some
(c , r)-divergent pair {u, v} .
Recall

exp
(
‖x‖
2C

)
2

≤ ‖ϕ (x)‖ ≤ e2C ‖x‖+1 −−− (F)

Wee-Kee Tang, Nanyang Technological University Isomorphisms of Lattices of Lipschitz Functions, 8/13



Case 1. s > 0.

In this case, we have s = limr→∞ sX (r) > 0, where sX (r) =
sup {min {‖u + v‖ , ‖u − v‖} : ‖u‖ = ‖v‖ = 1, ru, rv ∈ X} .
Fix c ∈ (0, s) . For every r > 0, sX (r) > c > 0. Choose u, v ∈ X
so that ‖u‖ = ‖v‖ = 1, ru, rv ∈ X and
min {‖u + v‖ , ‖u − v‖} > c. Call the pair of unit vectors {u, v} a
(c , r)-divergent pair.

Lemma 4
Suppose that limr→∞ sX (r) > c > 0. Let r ∈ [1,∞). For all
w ∈ X , ‖w‖ = r There is a path γ in X \ B(0, rc26 ) with
L (γ) ≤ 4r joining w and ru, where u belongs to some
(c , r)-divergent pair {u, v} .
Recall

exp
(
‖x‖
2C

)
2

≤ ‖ϕ (x)‖ ≤ e2C ‖x‖+1 −−− (F)

Wee-Kee Tang, Nanyang Technological University Isomorphisms of Lattices of Lipschitz Functions, 8/13



Case 1. s > 0.

In this case, we have s = limr→∞ sX (r) > 0, where sX (r) =
sup {min {‖u + v‖ , ‖u − v‖} : ‖u‖ = ‖v‖ = 1, ru, rv ∈ X} .
Fix c ∈ (0, s) . For every r > 0, sX (r) > c > 0. Choose u, v ∈ X
so that ‖u‖ = ‖v‖ = 1, ru, rv ∈ X and
min {‖u + v‖ , ‖u − v‖} > c. Call the pair of unit vectors {u, v} a
(c , r)-divergent pair.

Lemma 4
Suppose that limr→∞ sX (r) > c > 0. Let r ∈ [1,∞). For all
w ∈ X , ‖w‖ = r There is a path γ in X \ B(0, rc26 ) with
L (γ) ≤ 4r joining w and ru, where u belongs to some
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exp
(
‖x‖
2C
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Case 1. s > 0.

exp
(
‖x‖
2C

)
2

≤ ‖ϕ (x)‖ ≤ e2C ‖x‖+1 −−− (F)

Let N ∈N. By definition of sX (N) , there exists u, v ∈ X ,
‖u‖ = ‖v‖ = 1 so that Nu,Nv ∈ X ,
min {‖u + v‖ , ‖u − v‖} > c > 0. (i.e., {u, v} is a
(c,N)-divergent pair). It follows from (F) that
‖ϕ (Nu)‖ , ‖ϕ (Nv)‖ ≥ exp( N2C )

2 .
So, there exist a ∈ [0,Nu] and b ∈ [0,Nv ] , ‖a‖ , ‖b‖ ≥ 1 so that
‖ϕ (a)‖ = ‖ϕ (b)‖ = exp( N2C )

2 .
Since {u, v} is a (c ,N)-divergent pair, it can be shown that there
is u∗ ∈ E ∗ so that ‖u∗‖ ≤ 2

c and u
∗ (u) = 1, u∗ (v) = 0. Thus

‖a− b‖ ≥ |u
∗ (a− b)|
‖u∗‖ ≥ c

2
‖a‖ .−−− (♦)
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Case 1. s > 0.

‖a− b‖ ≥ |u
∗ (a− b)|
‖u∗‖ ≥ c

2
‖a‖ .−−− (♦)

Since lim sX (r) > c > 0, by Lemma 4, there is a path γ in
X \ B

(
0, c26 r

)
joining ϕ (a) and ϕ (b) with L (γ) ≤ 8r , where

r = ‖ϕ (a)‖ = ‖ϕ (b)‖ . Let {ϕ (a) = y0, y1, · · · , yn = ϕ (b)} be
points on the path γ so ∑ ‖yi − yi−1‖ ≤ L (γ) ≤ 8r and
‖yi‖ ≥ c

26 r for all i . By inserting additional partition points if
necessary, we may assume that ‖xi − xi−1‖ < 1, where
ϕ (xi ) = yi . Then

‖a− b‖ ≤∑ ‖xi − xi−1‖ = ∑ (‖xi − xi−1‖ ∧ 1)

≤ C ∑ ρ (yi−1, yi ) = C ∑
‖yi − yi−1‖

‖yi‖ ∨ ‖yi−1‖ ∨ 1
,

≤ C ∑ ‖yi − yi−1‖
c
26 r

≤ 26C (8r)
cr

≤ 208C
c

.

Hence, by (♦), c2 ‖a‖ ≤ 208C
c .
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Case 1. s > 0.

c
2
‖a‖ ≤ 208C

c
.−−− (N)

Recall:

exp
(
‖x‖
2C

)
2

≤ ‖ϕ (x)‖ ≤ e2C ‖x‖+1 −−− (F)

By (F), ‖ϕ (a)‖ ≤ e2C ‖a‖+1. Thus
2C ‖a‖+ 1 ≥ log ‖ϕ (a)‖ = log exp(

N
2C )
2 .

‖a‖ ≥ N
2C 2

+ k

for some constant k. Then by (N),
208C
c
≥ c ‖a‖

2
≥ c
2

(
N
2C 2

+ k
)
.

This is a contradiction as N can be taken arbitrarily large. (Case 1
proved).
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Further Results

Let X be an unbounded closed convex set of a Banach space
E . We have shown that

Theorem 3
Let X be a unbounded closed convex subset of a Banach space E.
If Lip∗ (X ) and Lip (X ) are ⊥-isomorphic then X is either a ray or
a line.

What about ⊥-isomorphism between Lip∗ (X ) and Lip (Y ) ,
for different X ,Y ?
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Further Results

Theorem 5
Let X , Y be unbounded closed convex subsets of Banach spaces
E , F respectively.
(i) If limr→∞ sX (r) > 0, then Lip∗ (X ) is not ⊥-isomorphic to
Lip (Y ) .
(ii) If limr→∞ sX (r) = limr→∞ sY (r) = 0, and
Lip∗ (X )⊥-isomorphic to Lip (Y ) , then X , Y are both lines or
rays.

What about limr→∞ sX (r) = 0 and limr→∞ sY (r) > 0?

Example 6
There are unbounded convex sets X , Y ⊆ `1, limr→∞ sX (r) = 0
and limr→∞ sY (r) > 0 so that Lip∗ (X ) is ⊥-isomorphic to
Lip (Y ) .

Thank you.
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