Some examples and counterexamples

Youssef AZOUZI

Cathage University, Tunisia

Positivity XII, June 2025, Tunisia

The talk

The talk

I will present some examples and counterexamples related to different types of convergence

The talk

I will present some examples and counterexamples related to different types of convergence

- Order conbergence
- Unbounded order convergence
- Relatively uniform convergence
- Convegence in T-conditionally probability
- Unbounded norm convergence.

Lattice normed spaces.

Lattice normed spaces.

A triple (E, p, V), where E is a vector space,

V is an Archimedean vector lattice

 $p: E \longrightarrow V$ is a V-vector valued norm.

p-convergence
$$p(x_{\alpha} - x) \stackrel{o}{\longrightarrow} 0$$

$$p(x_{\alpha}-x) \stackrel{\partial}{\longrightarrow}$$

rp-convergence
$$p(x_{\alpha} - x) \xrightarrow{ru} 0$$

Theorem

An rp-compact operator is sequentially rp-compact.

Theorem

An rp-compact operator is sequentially rp-compact.

Problem

What about the converse?

sequential rp-compactness does not imply rp-compactness.

sequential rp-compactness does not imply rp-compactness.

Example

Let $F = \{x \in \mathbb{R}^{\mathbb{R}} : Supp(x) \text{ is countable}\}$ and

$$P: E = F \oplus \mathbb{R} \mathbf{1}. \longrightarrow F; \qquad x + r \mathbf{1} \longmapsto x.$$

- $oldsymbol{0}$ P is sequentially rp-compact.
 - Assume that $|f_n| = |g_n + \lambda_n \mathbf{1}| \le f = g + \lambda \mathbf{1} \in E^+$, $n \in \mathbb{N}$.
 - $\bullet \quad \mathsf{Then} \ |\lambda_n| \leq \lambda.$
 - **9** Diagonal process $\Longrightarrow \exists (h_n) = (g_{\varphi(n)}) : (h_n)$ converges pointwise on A.

sequential rp-compactness does not imply rp-compactness.

Example

Let $F = \{x \in \mathbb{R}^{\mathbb{R}} : Supp(x) \text{ is countable}\}$ and

$$P: E = F \oplus \mathbb{R} \mathbf{1}. \longrightarrow F; \qquad x + r \mathbf{1} \longmapsto x.$$

- $oldsymbol{0}$ P is sequentially rp-compact.
 - Assume that $|f_n| = |g_n + \lambda_n \mathbf{1}| \le f = g + \lambda \mathbf{1} \in E^+$, $n \in \mathbb{N}$.
 - **2** Then $|\lambda_n| \leq \lambda$.
 - **1** Diagonal process $\Longrightarrow \exists (h_n) = (g_{\varphi(n)}) : (h_n)$ converges pointwise on A
- ② P is not bounded: The net $(u_{\alpha}) = \left(\chi_{\{\alpha\}}\right)_{\alpha \in \mathbb{R}}$ is bounded in E and $Tu_{\alpha} = u_{\alpha}$ is not bounded in F.

Convergence in probability

Convergence in probability

•
$$X_n \xrightarrow{\mathbb{P}} X : \mathbb{P}(|X_n - X| \ge \varepsilon) \longrightarrow 0 \ \forall \varepsilon > 0$$

- ullet Or equivalently $\mathbf{E}\left(\mathbf{1}_{(|X_n-X|-arepsilon\mathbf{1})^+>0}
 ight)\longrightarrow 0$
- It becomes

$$TP_{(|X_n-X|-\varepsilon e)^+}e\longrightarrow 0$$
 in order.

With Grobler's notations:

$$\mathbb{P}\left(\left|x_{n}-x\right|\geq\varepsilon e\right)\overset{o}{\longrightarrow}0.$$

Unbounded order convergence probability

Unbounded order convergence probability

A result we want to generalize

Theorem

If $X_n \longrightarrow X$ in probability then there exists a subsequence $X_{\phi(n)}$ which converges to X a.s.

Unbounded order convergence probability

A result we want to generalize

Theorem

If $X_n \longrightarrow X$ in probability then there exists a subsequence $X_{\phi(n)}$ which converges to X a.s.

Possible statements

- Given a conditional Riesz triple (E, T, e): If $x_n \xrightarrow{uo} x$ in T-conditionally probability then for some subsequence, $x_{\varphi(n)} \xrightarrow{uo} x$.
- Analogue question for nets.

Negative answers

Negative answers

Example

Let $E = (L^1)^{\Gamma}$ where Γ is the set of strictly increasing maps from $\mathbb N$ to $\mathbb N$. $T: E \longrightarrow E$; $(f_{\varphi}) \longmapsto ((\int f_{\varphi f}) \mathbf 1)$.

- **1** Pick a sequence (v_n) in L^1 s.t. $v_n \stackrel{\mathbb{P}}{\longrightarrow} 0$ but v_n does not cv a.s.
- ② let $y_{\varphi(n)}^{\varphi} = v_n$ and $y_k^{\varphi} = 0$ for the other values of k.
- **3** Finally define $x_n \in E$ by : $x_n = (y_n^{\varphi})_{\varphi \in \Gamma}$.

Negative answers

Example

Let $E = (L^1)^{\Gamma}$ where Γ is the set of strictly increasing maps from $\mathbb N$ to $\mathbb N$. $T: E \longrightarrow E; (f_{\varphi}) \longmapsto ((\int f_{\varphi f}) \mathbf 1)$.

- **1** Pick a sequence (v_n) in L^1 s.t. $v_n \stackrel{\mathbb{P}}{\longrightarrow} 0$ but v_n does not cv a.s.
- ② let $y_{\varphi(n)}^{\varphi} = v_n$ and $y_k^{\varphi} = 0$ for the other values of k.
- **3** Finally define $x_n \in E$ by : $x_n = (y_n^{\varphi})_{\varphi \in \Gamma}$.
- **1** Then (x_n) converges to 0 in T-conditionally probability. However for every extraction ψ we have $\left(x_{\psi(n)}(\psi)\right)_N=(v_n)_N$ is not uo-convergent.

Case of nets

Case of nets

We come back to the second question for nets

- 2a. (Even in the classical case) If $x_{\alpha} \longrightarrow x$ in T-conditionally probability then for some subnet $y_{\beta} \stackrel{uo}{\longrightarrow} x$.
- 2b. In a Banach lattice, if If $x_{\alpha} \longrightarrow x$ in norm then $y_{\beta} \stackrel{\circ}{\longrightarrow} x$. for some subnet.
- 2c. In a Banach lattice, if If $x_{\alpha} \longrightarrow x$ in norm then $y_{\beta} \stackrel{uo}{\longrightarrow} x$. for some subnet.

Negative answer A first example

Negative answer A first example

Example

 $X=\left\{ x\in\ell_{\infty}\left(\mathbb{R}
ight)
ight.$ with countable supportbrace .

Consider the net (x_{α}) defined by $x_{\alpha}=rac{1}{|\alpha|}\chi_{\alpha}$, $\alpha\in\mathcal{P}_{f}\left(\mathbb{R}
ight)$.

Then $x_{\alpha} \xrightarrow{\|.\|} 0$ but has no order convergent subnet.

Negative answer A second example

Negative answer A second example

Example

For $S\subseteq [0,1]$ finite and $\varepsilon>0$ let $V_{(S,\varepsilon)}$ be an open set : $S\subseteq V$ and $\mu\left(S\right)\leq \varepsilon$. Put $f_{(S,\varepsilon)}=\chi_{V_{(S,\varepsilon)}}.$

- We write $\alpha = (S, \varepsilon) \le \alpha' = (S', \varepsilon')$ if $S \subset S'$ and $\varepsilon \ge \varepsilon'$.
- ullet Then we have $f_{lpha} \stackrel{\|.\|}{\longrightarrow} 0$ in $L^1 [0,1]$.
- But (f_{α}) has no order (unbounded order) cv subnet.
 - Assume that $\left(f_{\varphi(\beta)}\right) \stackrel{o}{\longrightarrow} 0$. Then $f_{\varphi(\beta)} \leq g_{\beta}$ eventually for some $g_{\beta} \downarrow 0$. Fix $\beta_0 \in B$ and $(S, \varepsilon) = \varphi\left(\beta_0\right)$. For every $x \in [0, 1]$, there is $\beta_x \in B$ such that $\beta_x \geq \beta_0$ and $\varphi\left(\beta_x\right) \geq (S \cup \{x\}, \varepsilon)$. Let $V_x = V_{\varphi(\beta_x)}$ then $f_{\varphi(\beta_x)} = \chi_{V_x} \leq g_{\beta_x} \leq g_{\beta_0}$. By compactness $[0, 1] = \bigcup_{k=1}^n V_{x_k}$.
 - **2** Hence $g_{\beta_0} \ge 1 = \chi_{[0,1]}$. $(\forall \beta_0)$
 - A contradiction!

Usual definitions and notations

• E is **Dedekind complete** if ...

- E is **Dedekind complete** if ...
- *E* is uniformly complete if

- E is **Dedekind complete** if ...
- E is uniformly complete if
- E^{ru} is the relatively uniform completion of E.

- E is **Dedekind complete** if ...
- E is uniformly complete if
- E^{ru} is the relatively uniform completion of E.
- E^{δ} is the Dedekind completion of E.

- E is Dedekind complete if ...
- E is uniformly complete if
- E^{ru} is the relatively uniform completion of E.
- E^{δ} is the Dedekind completion of E.
- It is well-known that E^{ru} is the intersection of all uniformly complete vector sublattices of E^{δ} that contain E.

• E_x is the ideal generated by x in E.

- E_x is the ideal generated by x in E.
- It is easy to see that $\left(E^{\delta}\right)_{x}$ can be naturally identified with $\left(E_{x}\right)^{\delta}$. That is

$$\left(E^{\delta}\right)_{\mathsf{x}}=\left(E_{\mathsf{x}}\right)^{\delta}.$$

- E_x is the ideal generated by x in E.
- It is easy to see that $\left(E^{\delta}\right)_{x}$ can be naturally identified with $\left(E_{x}\right)^{\delta}$. That is

$$\left(E^{\delta}\right)_{\mathsf{x}}=\left(E_{\mathsf{x}}\right)^{\delta}.$$

- E_x is the ideal generated by x in E.
- It is easy to see that $\left(E^{\delta}\right)_{x}$ can be naturally identified with $\left(E_{x}\right)^{\delta}$. That is

$$\left(E^{\delta}\right)_{\mathsf{x}}=\left(E_{\mathsf{x}}\right)^{\delta}.$$

Problem

What about ru-completion?

Completion of a principal ideal

- E_x is the ideal generated by x in E.
- It is easy to see that $\left(E^{\delta}\right)_{x}$ can be naturally identified with $\left(E_{x}\right)^{\delta}$. That is

$$\left(E^{\delta}\right)_{\mathsf{x}}=\left(E_{\mathsf{x}}\right)^{\delta}.$$

Problem

What about ru-completion?

Is it true that

$$(E^{ru})_x = (E_x)^{ru}$$
?

The answer is

22

Example

Let E be the space of linear piecewise and continuous functions on [0,1] The $E^{ru}={\it C}\,[0,1]$. Hence

1 Define $u \in E$ by u(t) = t. Then

Example

Let E be the space of linear piecewise and continuous functions on [0,1] The $E^{ru}=\mathcal{C}\left[0,1\right]$. Hence

- **1** Define $u \in E$ by u(t) = t. Then

Example

Let E be the space of linear piecewise and continuous functions on [0,1] The $E^{ru}=\mathcal{C}\left[0,1\right]$. Hence

- ① Define $u \in E$ by u(t) = t. Then
- **3** The inclusion $(E_u)^{ru} \subset (E^{ru})_u$ is strict.

Proof

Proof

Put
$$H = \{ f \in E : \exists \varphi_n \in E_u, \varepsilon_n > 0 : |\varphi_n - f| \le \varepsilon_n u, \varepsilon_n \longrightarrow 0 \}$$
.

Proof.

- Clearly $H \subseteq (E_u)^{ru}$.
- For the converse it is enough to prove that H is ru complete.
- Assume that (f_n) is ru-Cauchy in H.
- Then $\exists (\varepsilon_n) \downarrow 0$, s.t. $|f_n f_m| \leq \varepsilon_n u$, for $m \geq n \geq 1$.
- Let $f = \lim_{n \to \infty} f_n$ in $E^{ru} = C[0, 1]$.
- We get $|f_n f| \le \varepsilon_n u$, for $n \ge 1$.
- As $f_n \in H \ \exists \varphi_n \in E_u \ \text{such} \ |\varphi_n f_n| \le \frac{1}{n}u$.
- Hence $|arphi_n f| \leq \left(\frac{1}{n} + arepsilon_n
 ight) u$, for all $n \in \mathbb{N}$. Thus $f \in H$.
- Thus $f_n \xrightarrow{ru} \longrightarrow f$ in H.
- This shows that H is r.u. complete as required.

The inclusion is strict

Proof.

- Consider tow real sequences (a_n) and (b_n) satisfying :
 - (i) $0 < a_{n+1} < b_{n+1} < a_n < b_n < < a_1 < b_1 = 1$, and
 - (ii) $\lim b_n = 0 = \lim a_n$.
- Define a function f on [0,1] by putting f(0) = 0, $f(b_n) = 0$, $f(a_n) = a_n$ for $n \in \mathbb{N}$, and f is linear on each of the intervals $[a_n, b_n]$, $[b_n, a_{n-1}]$.

Proof.

- Observe that $f \in E$ and $0 \le f \le u$. Hence $f \in (E^{ru})_u$.
- But $f \notin H = (E_u)^{ru}$? Assume $f \in (E_u)^{ru}$.
 - **1** Then $|\varphi_n f| \le \varepsilon_n u$ $n \in \mathbb{N}$, Here $(\varphi_n) \subseteq E$ and $\varepsilon_n \downarrow 0$.
 - ② Pick an integer n_0 such that $\varepsilon_{n_0} \leq 1/3$. As $\varphi_{n_0} \in E_u$ there exist $\delta > 0, \lambda \in \mathbb{R}$ such that $\varphi_{n_0}(t) = \lambda t$ for $t \in [0, \delta]$. Thus

$$|\lambda t - f(t)| \le 1/3.t$$
 for $t \in [0, \delta]$.

3 Applying this to $t = b_k$ for k large enough yields

$$|\lambda| \leq 1/3$$
.

4 Applying for $t = a_k$ for k large enough we get

$$|\lambda - 1| \le 1/3.$$

These last two inequalities are incompatible.

Two more examples

De La Vallé Poussin's classical theorem offers a characterization of uniform integrability.

Theorem

Let $\mathcal H$ be a family in $L^1\left(\mathbb P
ight)$. Then the following statements are equivalent:

- (i) The family H is uniform integrable;
- (ii) There exists a convex function $\varphi:[0,\infty)\longrightarrow [0,\infty)$ such that

$$\lim_{x \longrightarrow \infty} \frac{\varphi\left(x\right)}{x} = \infty \text{ and } \sup_{X \in \mathcal{H}} \mathbb{E}\left(\varphi\left(\left|X\right|\right)\right) < \infty.$$

De La Vallé Poussin's classical theorem offers a characterization of uniform integrability.

Theorem

Let \mathcal{H} be a family in $L^{1}\left(\mathbb{P}\right)$. Then the following statements are equivalent:

- (i) The family ${\cal H}$ is uniform integrable;
- (ii) There exists a convex function $\varphi:[0,\infty)\longrightarrow [0,\infty)$ such that

$$\lim_{x \longrightarrow \infty} \frac{\varphi\left(x\right)}{x} = \infty \text{ and } \sup_{X \in \mathcal{H}} \mathbb{E}\left(\varphi\left(\left|X\right|\right)\right) < \infty.$$

Problem

Is it true in the ontext of Riesz spaces?

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions $f:[1,\infty[\longrightarrow \mathbb{R} \text{ such that } f(x)=O(x) \text{ as } x\longrightarrow \infty.$

E is a Dedekind complete Riesz space with weak order unit e, where e(t)=1 for all $t\in [1,\infty)$. Let $T:E\longrightarrow E$ be the identity map and $\mathcal{F}=\{u\}$ with u(x)=x. Then T is a conditional expectation and \mathcal{F} is T-uniform. If φ is a test function, which means that φ is a convex

function on $[1, \infty)$ and $\lim \frac{\varphi(x)}{x} = \infty$) then $\varphi(u) \in E^s \setminus E$.

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions $f:[1,\infty[\longrightarrow \mathbb{R} \text{ such that } f(x)=O(x) \text{ as } x\longrightarrow \infty.$

E is a Dedekind complete Riesz space with weak order unit e, where e(t)=1 for all $t\in [1,\infty)$. Let $T:E\longrightarrow E$ be the identity map and $\mathcal{F}=\{u\}$ with u(x)=x. Then T is a conditional expectation and \mathcal{F} is T-uniform. If φ is a test function, which means that φ is a convex

function on $[1, \infty)$ and $\lim \frac{\varphi(x)}{x} = \infty$) then $\varphi(u) \in E^s \setminus E$.

Some hope

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions $f:[1,\infty[\longrightarrow \mathbb{R} \text{ such that } f(x)=O(x) \text{ as } x\longrightarrow \infty.$

E is a Dedekind complete Riesz space with weak order unit e, where e(t)=1 for all $t\in [1,\infty)$. Let $T:E\longrightarrow E$ be the identity map and $\mathcal{F}=\{u\}$ with u(x)=x. Then T is a conditional expectation and \mathcal{F} is T-uniform. If φ is a test function, which means that φ is a convex

function on $[1, \infty)$ and $\lim \frac{\varphi(x)}{x} = \infty$) then $\varphi(u) \in E^s \setminus E$.

Some hope

• Note that $\varphi(u) \in E^u$, the universal completion of E, and even better $\varphi(u) \in L^1(T)$.

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions $f:[1,\infty[\longrightarrow \mathbb{R} \text{ such that } f(x)=O(x) \text{ as } x\longrightarrow \infty.$

E is a Dedekind complete Riesz space with weak order unit e, where e(t)=1 for all $t\in [1,\infty)$. Let $T:E\longrightarrow E$ be the identity map and $\mathcal{F}=\{u\}$ with u(x)=x. Then T is a conditional expectation and \mathcal{F} is T-uniform. If φ is a test function, which means that φ is a convex

function on $[1, \infty)$ and $\lim \frac{\varphi(x)}{x} = \infty$) then $\varphi(u) \in E^s \setminus E$.

Some hope

- Note that $\varphi(u) \in E^u$, the universal completion of E, and even better $\varphi(u) \in L^1(T)$.
- Thus (ii) is indeed fulfilled if we work in the space $L^{1}(T)$.

4 D > 4 A > 4 B > 4 B > 9 Q O

Y. Azouzi (IPEST) Convergence

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions $f:[1,\infty[\longrightarrow \mathbb{R} \text{ such that } f(x)=O(x) \text{ as } x\longrightarrow \infty.$

E is a Dedekind complete Riesz space with weak order unit e, where e(t)=1 for all $t\in [1,\infty)$. Let $T:E\longrightarrow E$ be the identity map and $\mathcal{F}=\{u\}$ with u(x)=x. Then T is a conditional expectation and \mathcal{F} is T-uniform. If φ is a test function, which means that φ is a convex

function on $[1, \infty)$ and $\lim \frac{\varphi(x)}{x} = \infty$) then $\varphi(u) \in E^s \setminus E$.

Some hope

- Note that $\varphi(u) \in E^u$, the universal completion of E, and even better $\varphi(u) \in L^1(T)$.
- Thus (ii) is indeed fulfilled if we work in the space $L^{1}\left(T\right)$.
- One might then expect that Theorem 10 holds in the general.

Y. Azouzi (IPEST) Convergence 22

Example

Let A denotes the set of all convex functions $\varphi:[0,\infty)\longrightarrow [0,\infty)$ satisfying $\lim_{x\longrightarrow\infty}\frac{\varphi\left(x\right)}{x}=\infty$ and consider the conditional Riesz triple (E,T,e) with $E=\left(L^{1}\left[0,1\right]\right)^{A}$, $e=\left(e_{\varphi}=1\right)_{\varphi\in\mathcal{A}}$ and T is defined as follows

$$Tf = \left(\int f_{\varphi} d\mu\right)_{\varphi \in A} \text{ for all } f = \left(f_{\varphi}\right)_{\varphi \in A} \in E.$$

Example

Let A denotes the set of all convex functions $\varphi:[0,\infty)\longrightarrow [0,\infty)$ satisfying $\lim_{x\longrightarrow\infty}\frac{\varphi\left(x\right)}{x}=\infty$ and consider the conditional Riesz triple (E,T,e) with $E=\left(L^{1}\left[0,1\right]\right)^{A}$, $e=\left(e_{\varphi}=1\right)_{\varphi\in A}$ and T is defined as follows

$$Tf = \left(\int f_{\varphi} d\mu\right)_{\varphi \in A} ext{ for all } f = \left(f_{\varphi}\right)_{\varphi \in A} \in E.$$

Now for each $arphi\in A$ one can find an element $X_{arphi}\in L^{1}\left[0,1
ight]$ such that

$$\int_{\left\{\left|X_{\varphi}\right|\geq n\right\}}\left|X_{\varphi}\right|d\mu\leq\frac{1}{n}\text{ for all }n=1,2,...\text{ and }\int\varphi\left(\left|X_{\varphi}\right|\right)d\mu=\infty.$$

Example

Let A denotes the set of all convex functions $\varphi:[0,\infty)\longrightarrow [0,\infty)$ satisfying $\lim_{x\longrightarrow\infty}\frac{\varphi(x)}{x}=\infty$ and consider the conditional Riesz triple (E,T,e) with $E=\left(L^1\left[0,1\right]\right)^A$, $e=\left(e_{\varphi}=1\right)_{\varphi\in A}$ and T is defined as follows

$$Tf = \left(\int f_{\varphi} d\mu\right)_{\varphi \in A} \text{ for all } f = \left(f_{\varphi}\right)_{\varphi \in A} \in E.$$

Now for each $arphi\in A$ one can find an element $X_{arphi}\in L^{1}\left[0,1
ight]$ such that

$$\int_{\left\{\left|X_{\varphi}\right|\geq n\right\}}\left|X_{\varphi}\right|d\mu\leq\frac{1}{n}\text{ for all }n=1,2,...\text{ and }\int\varphi\left(\left|X_{\varphi}\right|\right)d\mu=\infty.$$

Furthermore let $Y^{\varphi} \in L^{1}\left(T\right)$ be defined as follows: $Y^{\varphi}\left(\psi\right) = X_{\varphi}$ if $\psi = \varphi$ and $Y^{\varphi}\left(\psi\right) = 0$ otherwise. The family $\left(Y^{\varphi}\right)_{\varphi \in A}$ is T-uniform. But there is no function φ in A such that $\sup T\varphi\left(\left|Y\right|\right)$ exists in $L^{1}\left(T\right)$.

Thank you