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The talk

| will present some examples and counterexamples
related to different types of convergence

00000

Order conbergence

Unbounded order convergence

Relatively uniform convergence
Convegence in T-conditionally probability

Unbounded norm convergence.
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rp-compactness

Lattice normed spaces.
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rp-compactness

Lattice normed spaces.

A triple (E, p, V'), where

E is a vector space,

V is an Archimedean vector lattice

p: E — V is a V-vector valued norm.

p-convergence p (X¢ — X) =50
rp-convergence p(xe—x) =50
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rp-compactness

An rp-compact operator is sequentially rp-compact. \
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rp-compactness

An rp-compact operator is sequentially rp-compact. \
Problem
What about the converse?
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rp-compactness
sequential rp-compactness does not imply rp-compactness.
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rp-compactness
sequential rp-compactness does not imply rp-compactness.

Example
Let F = {x € RR: Supp (x) is countable} and

P:E=F®R1l. — F; x4+ rl — x.

@ P is sequentially rp-compact.
O Assume that |[fy| = |gn +Apl| < f=g+Al€Et neN.
@ Then |A,] < A
© Diagonal process = 3 (h,) = (gq,(,,)) : (hn) converges pointwise on
A.
O We get h, — hin F.
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rp-compactness
sequential rp-compactness does not imply rp-compactness.

Let F = {x € RR: Supp (x) is countable} and

P:E=F®R1l. — F; x4+ rl — x.

@ P is sequentially rp-compact.

O Assume that |[fy| = |gn +Apl| < f=g+Al€Et neN.
@ Then |A,] < A
© Diagonal process = 3 (h,) = (gq,(,,)) : (hn) converges pointwise on
A.
O We get h, — hin F.
@ P is not bounded :
The net (uy) = X{a}) is bounded in E and Tu, = uy is not
a€R

bounded in F.
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Convergence in probability

Y. Azouzi (IPEST) Convergence



Convergence in probability

® Xp == X 1 P (X, — X| > ) — 0 Ve >0
@ Or equivalently E (1(‘XH7X‘7£1)+>0> —0

@ It becomes
T'D(|X,,—X|7€e)+e — 0 in order.

@ With Grobler's notations :

P (|x, — x| > €e) -250.
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Unbounded order convergence probability
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Unbounded order convergence probability

A result we want to generalize

If X, — X in probability then there exists a subsequence X,y which
converges to X a.s.
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Unbounded order convergence probability

A result we want to generalize

If X, — X in probability then there exists a subsequence X,y which
converges to X a.s.

Possible statements

@ Given a conditional Riesz triple (E, T, e):
If x, — x in T-conditionally probability then for some subsequence,
uo
X(P(”) — X.

@ Analogue question for nets.
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Negative answers
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Negative answers

Example

—
~—

Let £ = (L)' where T is the set of strictly increasing maps from IN to
N. T:E— E; (fq,) — ((ffq;f)l).

@ Pick a sequence (v;) in L'st. v, x, 0 but v, does not cv a.s.
Q let y:pp(n) = v, and yf = 0 for the other values of k.

Q@ Finally define x, € £ by : x, = (yf) ,cr-
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Negative answers

Let E = (Ll)r where T is the set of strictly increasing maps from IN to
N.T:E—E; (fp) — (([for)1).

Pick a sequence (v,,) in L!s.t. v, *F, 0 but v, does not cv a.s.
let yg(n) = v, and yf = 0 for the other values of k.

Finally define x € E by : xp = (v) per -

Then (x,) converges to 0 in T-conditionally probability. However for

every extraction ¢ we have (XUJ(,,) (lP))
uo-convergent.

v (vn)y is not
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Case of nets
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Case of nets

We come back to the second question for nets

2a. (Even in the classical case)

If x, — x in T-conditionally probability then for some subnet

2b. In a Banach lattice, if If x, — x in norm then yg — x. for some
subnet.

2c. In a Banach lattice, if If x, — x in norm then Yp 2, x. for some
subnet.
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Negative answer
A first example
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Negative answer
A first example

X = {x € le (R) with countable support} .

1
Consider the net (x,) defined by x, = WX"" a € Pr(R).
[l

Then x, — 0 but has no order convergent subnet.
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Negative answer
A second example
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Negative answer
A second example

Example

For S C [0, 1] finite and € > 0 let V(s,e) be an open set : SCVand
u(S) <e Put flse) = XVise

o Wewritew = (S,¢) <a' =(5,¢)ifSC S ande>¢.

@ Then we have f, LER 0in L0, 1].

@ But (fy) has no order (unbounded order) cv subnet.

© Assume that (f(’,(ﬁ)) —250. Then ffﬁ(ﬁ) < gp eventually for some

gp 1 0. Fix By € B and (S, €) = ¢ (By) - For every x € [0,1], there is
B, € B such that B > B, and ¢ (B,) > (SU {x},¢€). Let
Vi = V<P(l3x) then f<P(l3x) =Xv, <8 < gﬁO.By compactness

n

0.1 = U Va.
k

@ A contradiction!
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Completeness
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Completeness

Usual definitions and notations

o E is Dedekind complete if ...
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Completeness

Usual definitions and notations

o E is Dedekind complete if ...

o E is uniformly complete if ....
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Completeness

Usual definitions and notations

o E is Dedekind complete if ...
o E is uniformly complete if ....

@ E™ is the relatively uniform completion of E.
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Completeness

Usual definitions and notations

E is Dedekind complete if ...

E is uniformly complete if ....

E™ is the relatively uniform completion of E.
E?° is the Dedekind completion of E.
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Completeness

Usual definitions and notations

E is Dedekind complete if ...

E is uniformly complete if ....

E™ is the relatively uniform completion of E.
E?° is the Dedekind completion of E.

It is well-known that E™ is the intersection of all uniformly complete
vector sublattices of E° that contain E.
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Completion of a principal ideal
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Completion of a principal ideal

@ E, is the ideal generated by x in E.
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Completion of a principal ideal

@ E, is the ideal generated by x in E.
o It is easy to see that (E?)  can be naturally identified with (E)°.

That is
(#), e
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@ E, is the ideal generated by x in E.
o It is easy to see that (E?)  can be naturally identified with (E)°.
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Completion of a principal ideal

@ E, is the ideal generated by x in E.
o It is easy to see that (E?)  can be naturally identified with (E)°.

That is
(#), e

Problem

What about ru-completion?

Y. Azouzi (IPEST) Convergence



Completion of a principal ideal

@ E, is the ideal generated by x in E.

o It is easy to see that (E?)  can be naturally identified with (E)°.

That is
(#), e

Problem

What about ru-completion?

Is it true that

(E™), = (E)™?

X
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The answer is
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The answer is NO
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The answer is NO

Example

Let E be the space of linear piecewise and continuous functions on [0, 1]
The E™ = C[0,1]. Hence

@ Define u € E by u(t) =t. Then
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The answer is NO

Example

Let E be the space of linear piecewise and continuous functions on [0, 1]
The E™ = C[0,1]. Hence

@ Define u € E by u(t) =t. Then
Q (E)"={feE:3p, € Eyen>0:|p, —f|<eyu e, — 0}.
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The answer is NO

Example
Let E be the space of linear piecewise and continuous functions on [0, 1]

The E™ = C[0,1]. Hence
@ Define u € E by u(t) =t. Then
Q (E)"={feE:3p, € Eyen>0:|p, —f|<eyu e, — 0}.
© The inclusion (E,)™ C (E™), is strict. |

Convergence
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Proof
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Proof
PutH={fcE:3J¢p,€E,e,>0:|p,—f| <epue, — 0}.

Proof.
e Clearly H C (E,)™ .
@ For the converse it is enough to prove that H is ru complete.
o Assume that (f,) is ru-Cauchy in H.
@ Then d(e,) | O, s.t. |fh — f| < €nu, form>n>1.
o Let f =limf, in E" =CJ0,1].
o We get |f, — f| < €pu, for n > 1.

1
e As f, € H 3¢, € E, such |p, — 1| < .
1
@ Hence |p, —f| < ( —|—£,,> ufor all n € IN. Thus f € H.
n

@ Thus f, ——— f in H.

@ This shows that H is r.u. complete as required.
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The proof (Cont.)
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The proof (Cont.)

The inclusion is strict

Proof.
o Consider tow real sequences (a,) and (b,) satisfying :
(0<apt1 < bpy1 <ap < b, <...<a <b =1, and
(i) lim by = 0 = lim ap.
@ Define a function f on [0, 1] by putting f (0) =0, f (b,) =0,
f (an) = an for n € IN, and f is linear on each of the intervals
[an, bn], [Pn, an—1].
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The proof (Cont.)
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The proof (Cont.)

o Observe that f € E and 0 < f < u. Hence f € (E™),,.
o But f ¢ H=(E,)"? Assume f € (E,)"™.

Q Then |, —f| < epu n€eN, Here (¢,) C E and g, | 0.
@ Pick an integer ny such that e, < 1/3. As Py € E, there exist
0>0,A € Rsuch that ¢, (t) = At for t € [0,4]. Thus

At —f(t)| <1/3.tfort € [0,0].
© Applying this to t = by for k large enough yields
Al <1/3.
@ Applying for t = a; for k large enough we get

A—1]<1/3.

These last two inequalities are incompatible.
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Two more examples




De la Vallé Poussin Theorem
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De la Vallé Poussin Theorem

De La Vallé Poussin’s classical theorem offers a characterization of uniform
integrability.

Theorem

Let H be a family in L* (IP) . Then the following statements are equivalent:

(i) The family H is uniform integrable;
(ii) There exists a convex function ¢ : [0, c0) — [0, 00) such that

lim 20 _ oo and sup E (¢ (| X])) < oo.
XeH

X—00 X
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De la Vallé Poussin Theorem

De La Vallé Poussin’s classical theorem offers a characterization of uniform
integrability.

Theorem

Let H be a family in L* (IP) . Then the following statements are equivalent:

(i) The family H is uniform integrable;
(ii) There exists a convex function ¢ : [0, c0) — [0, 00) such that

lim 20 _ oo and sup E (¢ (| X])) < oo.
XeH

X—00 X

Problem
Is it true in the ontext of Riesz spaces?
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De la Vallé Poussin Theorem
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De la Vallé Poussin Theorem

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions f : [1,00[— R such
that f (x) = O (x) as x — oo.

E is a Dedekind complete Riesz space with weak order unit e, where
e(t)=1forall t € [1,00). Let T : E — E be the identity map and

F = {u} with u(x) = x. Then T is a conditional expectation and F is
T-uniform. If ¢ is a test function, which means that ¢ is a convex

function on [1,00) and lim (I’E(X) = o0) then ¢ (u) € E°\ E.
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De la Vallé Poussin Theorem

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions f : [1,00[— R such
that f (x) = O (x) as x — oo.

E is a Dedekind complete Riesz space with weak order unit e, where
e(t)=1forall t € [1,00). Let T : E — E be the identity map and

F = {u} with u(x) = x. Then T is a conditional expectation and F is
T-uniform. If ¢ is a test function, which means that ¢ is a convex

function on [1,00) and lim (I’E(X) = o0) then ¢ (u) € E°\ E.

Some hope
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De la Vallé Poussin Theorem

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions f : [1,00[— R such
that f (x) = O (x) as x — oo.

E is a Dedekind complete Riesz space with weak order unit e, where
e(t)=1forall t € [1,00). Let T : E — E be the identity map and

F = {u} with u(x) = x. Then T is a conditional expectation and F is
T-uniform. If ¢ is a test function, which means that ¢ is a convex

function on [1,00) and lim (PE(X) = o0) then ¢ (u) € E°\ E.

Some hope

o Note that ¢ (u) € EY, the universal completion of E, and even better
¢ (u) € L1(T).

Y. Azouzi (IPEST) Convergence



De la Vallé Poussin Theorem

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions f : [1,00[— R such
that f (x) = O (x) as x — oo.

E is a Dedekind complete Riesz space with weak order unit e, where
e(t)=1forall t € [1,00). Let T : E — E be the identity map and
F = {u} with u(x) = x. Then T is a conditional expectation and F is
T-uniform. If ¢ is a test function, which means that ¢ is a convex

function on [1,00) and lim (PE(X) = o0) then ¢ (u) € E°\ E.

Some hope

o Note that ¢ (u) € EY, the universal completion of E, and even better

@ (u) e L}(T).
@ Thus (ii) is indeed fulfilled if we work in the space L' (T).
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De la Vallé Poussin Theorem

We consider a Riesz conditional triple (E, T, e)

Example

Let E be the Riesz space consisting of all functions f : [1,00[— R such
that f (x) = O (x) as x — oo.

E is a Dedekind complete Riesz space with weak order unit e, where
e(t)=1forall t € [1,00). Let T : E — E be the identity map and
F = {u} with u(x) = x. Then T is a conditional expectation and F is
T-uniform. If ¢ is a test function, which means that ¢ is a convex

function on [1,00) and lim (PE(X) = o0) then ¢ (u) € E°\ E.

Some hope

o Note that ¢ (u) € EY, the universal completion of E, and even better
@ (u) e L (T).

@ Thus (ii) is indeed fulfilled if we work in the space L' (T).

@ One might then expect that Theorem 10 holds in the general
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A negative answer
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A negative answer

Example
Let A denotes the set of all convex functions ¢ : [0, c0) — [0, o)

satisfying lim M = oo and consider the conditional Riesz triple
X ——00 X

(E. T.e) with E = (L1[0,1])", e = (ey = 1), and T is defined as
follows

T = (/ f(de) for all £ = (£y) s € E.
peA
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A negative answer

Example
Let A denotes the set of all convex functions ¢ : [0, c0) — [0, o)

¢ (x)

satisfying lim ——= = oo and consider the conditional Riesz triple
X——00 X

(E. T.e) with E = (L1[0,1])", e = (ey = 1), and T is defined as

T = (/ f(de) for all £ = (£y) s € E.
peA

Now for each ¢ € A one can find an element X, € L' [0, 1] such that

follows

[{|X 20} ‘X(p’ du < % foralln=1,2,... and /¢(|X¢}) dyu = oo.
p|=n
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A negative answer

Example
Let A denotes the set of all convex functions ¢ : [0, c0) — [0, o)

¢ (x)

satisfying lim ——= = oo and consider the conditional Riesz triple
X——00 X

(E. T.e) with E = (L1[0,1])", e = (ey = 1), and T is defined as

follows

T = (/ ﬁ,,dy) for all £ = (£y) s € E.
peA

Now for each ¢ € A one can find an element X, € L' [0, 1] such that

[{|X 20} ‘X(p’ du < % foralln=1,2,... and /qo (|X¢}) dy = co.
q,in

Furthermore let Y¢ € L' (T) be defined as follows: Y? () = X, if
¥ = ¢ and Y7 (¢) = 0 otherwise. The family (Y'?),, is T-uniform. But

there is no function @ in A such that sup Te (|Y]) exists in L1 (T).
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Thank you
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